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SUMMARY" -~

This réport demonstrates the successful application of statistical
variable selection techniques to fit splines. Major emphasis is given to
knot selection, but order determination is also discussed. Two FORTRAN
backward_eLihination programé using the B4sp1ine basis were developed, and
the one for knot elimination is c;mparedvih detail with two other spline-
fitting methods and several statistical software packages. An example is
also given for the two-variable case using a tensor product basis, with a

theoretical discussion of the difficulties of their use.

1. INTRODUCTION

Polynomial splines have often been employed in modeling or data fitting
when the functional form of the rélationship-between the dependent and inde-
pendent variables is unknown. The major problem has been how to avoid
under~ or overfitting the data. A strictly mathematical approach is to add
knots one at a time and move them around until the Lj° (6r some other) norm
of the errors is less than a preselected tolerance level (ref. 1). A major
problem with this approach is that a good fit depends entirely on the sub-
jective selection of the tolerance level. A fitting method which attempts
to avoid this problem is the smoothing technique introduced by Reinsch
(ref. 2), but it requires the experimenter to have good a priori information
about chevdata or the process which genefated it. Both of these methods are

currently feasible only for functions of a single variable.

A sta}istical approach to the curve-fitting problem using the method of

cross-validation was intfoduced by Wahba and Wold (ref. 3). The major



advantage of this procedure is its automation: no a priori 'information is
needed. There are several disadvantages, however. Every data point is a
knot so that the resulting functional forw is difficult to use and inter-
pret. In addition, if there are clearly identifiable trends in certain
portions of the data such as linearity or sharp bends, this information is
lost analytically even though it shows up when the spline is plotted. The
practical use of this technique is also currently restricted to functions 6f
one or two vériables. The two variable case is considered in Wahba (ref.

4), with higher dimensions discussed in Wahba and Wendelberger (ref. 5).

Other gtatistical approaches to the variable knot spline problem have
considered the knots as parameters in the model. However, this presents
problems in finding thé least squares solution and in subsequent statistical
estimation and testing procedures because the model is nonlinear. Tradi-
tional (ref. 6) as well as Bayesian (ref. 7) approaches have been investi-
gated, but both are limited in scope and-application. Further, in most
cases; though the knot locations have Been variable, their number has been
fixed a Eriori-by the analyst., Some exceptions are the works of Ertel and
Fowlkes (ref. 8), Smith and Smith (ref. 9), and Agarwal and Studden (ref.
10), but, as with most other approaches mentioned above, they have not been

developed to fit splines in several variables,

The technique investigated in this research is the use of variable
selection procedures to fit splines. T1f a pool of knots is fixed in advance,
then statistical linear models theory can be applied in a variable selec-
tion framework. There are four major advantageé of the variable selection
approach fo fitting splines. First, variable selection procedures are
essentially user independent (automatic) in their use of the F test as a
stopping criterion. Second, they are widely available in statistical soft-
ware. Third, final fits may have straightforward intepretations because of>'
their simplicity or theoretical foundation. Fourth, regression diagéostics,
such as outlier detection, may be performed. These advantages and other

desirable properties are discussed in Section 4, along with a comparison of

several methods and software.

The theory applies not only to splines in a single variable, but also

to splines in several variables using a tensor product basis. However, as
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the careful and detailed development of this technique in the one-variable
case is considered a crucial step to its use in several variables, discus-
sion of the multivariate case is restricted to Section 7, and includes an

example of its successful application to aerodynamic modeling.

The major emphasis of this report is the appiication of variable selec-
tion procedures for choosing the number and location of the knots for
splines in a single variable of fixed order (= degree +1). A detailed dis-
cussion of this “knot selection" approach is given in Section 2 with exam-
ples, comparison of methods and software, and applicatiéns in Sections 3-5.
Choosing the spline order with the number and location of the knots fixed 1s
of less interest and considered in Section 6 only. FORTRAN programs which
apply backward elimination in these two contexts were written as part of
this research and discussed in Sections 2 and 6. Their documentation, flow-

charts, and listings are given in the Appendix.

LIST OF SYMBOLS

a angle of attack

a. breakpoint for angle of attack

Al A4y regression chfficients

b : sideslip anglé
‘bj . breakpoint for sideslip angle
Boj,BE regressign coefficients

B, {x,y) , two-variable spline basis element
€y Cy . regression coefficients

¢! , - ) class of discontinuous functions
CO,CI,VCk-Z,Ck-3 - functions with continuity class 0, 1, k-2, k_3'
-Cn, ' ' yawing moment coefficient
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partial derivative of Cq with respect to

Py T, §_, 6_

vertical force coefficient

partial derivatives of c, ~with respect to
a, 6., 4q

regression coefficients

function and its first k derivatives
index
index

spline order (degree + 1)

nunber of breakpoints

normal distribution

sample size

nond imensional rolling velocity
nond imensional pitch rate
quantile function

nond imensional yawing velocity
breakpoint

independent variable
number of breakpoints

independent variable

breakpoints for x
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y o S dependent variable

yo,---,yj.yj breakpoiqts for .y

a | 4 significance level

'Bo,..,,832,81 fegression coefficients

a’ée’ér aileron, elevator, and rudder deflection

€ random error

u " mean

G | ‘ _ standard devi;tion
:.*ij gfidpoipt (xi,yj)

Abbreviations:

KS ) : knéf selection

MSE ' mean squared error
SS Smith-Swith

SSE - error sum of squares
W Wahba-Wold

2. THE KNOT SELECTION (KS) PROCEDURE

Statistical variable selection procedures can be used as a KS procedure
to choose the number and location of knots in fitting splines. The "+"
function basis is suitable for this, at least theoretically, because it is.
easily interpreted. Knots and knoirmultiplicitiés correspond to individual
terms so that selection or deletion of terms is equivalent .to selection or
_Qeletion of knots. The knots are thus selected-indiréctly. For example, a

‘continuous linear spline with knots tz,;.;;tn may be written as

£ - .
8 +B. x+IL_B.(x~-t.), where u =u for 'u > 0 and zero other-
0 1 21 17+ + )
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wise. Selection of the "spline term" (x - tj)+ is actually selection of the

knot tj. Because we don't know where the breakpoints should be, we provide

as candidate variables a liberal number of spline terms, i.e., a pool of s
knots, more than we expect or want to eventually use, and blanket the

domain. Thus, the actual number and location of the knots used in the final M
model is unknown at the beginning in the sense that we are selecting from a

larger set.

While '"+" functions are easily defined in current statistical software
packages and fit into the statistical hypothesis testing framework without
modification (ref. 11), computational problems such as carry-over in round-
off error and multicollinearity greatly restrict their use. As will be seen
in Section 4, the backward elimination (stepdown) procedures are especially
troublesome because all terms must be fit initially. An alternative is the
use of the computationally advantageous B-spline basis (ref. 1). Unfortu-
nately, it does not fit easily into the hypothesis testing framework and
cannot be used in existing statistical software packages. There was thus a
need for the development of a KS procedure using B-splines. Construction
of hypotheses which are useful in B-spline regression, including testing the
importance of knots, has been detailed in Smith (ref. 12). As part of this
research, these results have been implemented in two FORTRAN computer
programs, one of which accommodates the backward elimination of knots using
the B-spline basis. Examples in Section 3 give the results of using this
FORTRAN program, and comparisons with several statistical softwire packages,
as well as with other statistical spline-fitting methods, are detailed in

Section 4,

The use of variable selection is a sort of compromise between the tech-
niques which use either fixed or variable knots. Its most important advan-
‘tage, and one which makes possible all others, is that because the maximum
number and location of the knots is fixed in advance, the statistical theory

of general linear models applies. Consequently, the least squares- solution-
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is easily obtained at any gibéHJstep;Vand‘hjpothesis testing and interval
estimation are straight forward. As mentioned earlier, details for using the
B-spline basis are given in reference 12. The selection of knots can thus
be accomplished through t tests. This fits exactly into the variable
selection framework for (1) spline models in a single variable, (2) models
in several variables with spline terms in one or more variables, and (3)
models in several variableg with tensor products defining higher dimensional
splines. Also, trends in the data in one or mofe variables may be easily
detected through the selection of a few knots, Several examples of this
will be given in the next section. Further, in some experimental situa-
tions, models may be éasily interpreted becaﬁse'the coefficients are physi-

cally meaningful, as in some examples in Sections 5 and 7.
3. EXAMPLES OF THE KS PROCEDURE

Four data sets were examined using the FORTRAN knot elimination pro-
gran. The maximum number of continuity constraints allowed for any given
order were imposed. The first data set, the Indy data, is rather simplistic
but has appeared in the statistical literature several times in connection
with curve-fittiﬁg with splines. It is a record of the average winning
speeds at the Indianapolis 500 from 1911-1971, except for 1917-1918 and
1942-1945, during the two World Wars when the race was not run. Poirier
(ref. 13) fit the data with a cubic spline with 2 knots, one each at the
midpoint of the non-racing years. The data were coded so that x = year -
1910 with knots 7.5 and 33.5. The output and graphs from the knot elimi-
nation routine are shown in Figures 3.1 to 3.4, with circles around the
function values of the knots. Using an F-table value of 8.0 (a = 0.01), the
KS procedure eliminates both knots so that a cubic polynomial is adequate
to fit the data. If a lineap rétﬁér'than a cubic spline is fit, only the

knot at x = 7,5 can be eliminated (Figures 3.5 to 3.7).

The second example is noisy data generated from the function used in

reference 3 )
£(x) = 4.26(e * - 4e 2% 4 30 0%
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THE ORTER K = 4
THE & INTERVALS L = 3

THE DIMEMSION N = B )

BREAKPOINTS.

CONTINUITY CniDITIONS
0. 00000 %]
7. Se322a00 ' 3
33. 58000002 3
62 . BI3000I0
T INDEX
8. 0000ee3 1
8. G333 z
(2 N%% 5.5 %% % 5) 3
2. 03308000 a .
WEMD1 1rs a
7.<02000e0 s
FEMD:  20s <
33. S2080a30 Y
FEMDe 20 z
&2 . Q8000300 7
62 . B00B00320 B8
6. 3OB0CCa0 9
62 . 003K0000 i0
L 3 F-TABLE VALLE IS 8. eo030’0a
SSE~ 385.29068218 MSE = 7.EEZOEZS0

F-RATICS ARE: BREAKPOINTS wFE

1.41909767 7. SI0000aC
L32417963 33. 50002000

BREAKPIOINT 33.S00 IS5 ELTIINNTED

L= 2 F=TRBLE =€ IS Z. Q203000
SSE. 387.83908771 MSE - ?.7S678ITS
F-RATIOS ARE: BREAKPOINTS &PE

1.1198c607 7. Senglse0
BREAKPOINT  7.50@ IS ELIMINARTED

SSE - 396.52533411 MSE = T.TTEO0ECS

PROCEDURE TERMINATES WITH L» | AND k= 4

N COEF S.E.
1 74.74373319 1.56753207S
2 118.79327327 3.10571455
3 113.63057381 3.1680S15?
4 161, 44853572 1.53807401

Qutput for knot eélimination. Indy data. Cubic spline.
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> 116

0 . 12.4 24.8 37.2 43.6 6.0
: INDY DRTR

Figure 3.2. First step of knot elimination. Indy data. Cubic Spline.

198

i

> 116

0 12.4 24.8 3.2 3.5 . 6.0
o INDOY DATA

Figure 3.3. Second step of knot elimination., Indy data. Cubic spline.
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> 116

0 12.% 24.8 .2  49.8 62.0
INDY DARTA

Third and final step of knot elimination. Indy data. Cubic

spline.

L= 3 ) F-TABLE UALUE 1§ 8.0d0000080
SSE. 453.46808846 MSE - 8.891531145
F-RATIOS ARE! BREAKPOINTS ARE

5.60928518 7.50000000

16.27042823 33.5¢000000

BREAKPOINT  7.500 1§ ELIMINATED

L= 2 F-TABLE UVALUE IS 8.00600000
SSE= 503.34322235  MSEe 9.67967735

F-RATIOS ARE! BREAKPOINTS ARE
9.83428353 33.5ee00000

NO BREAKPOINT CAN HE ELIMINATED

PROCEDURE TERMINATES UITH Le 2 AMD Ka 2

N . COEF B _S.E.
1 78.15096288 1.126854643
2 115.82035776 . 91553083
3 157.04127664 1.14098079

Figure 3.5. Partial output for knot elimination. 1Indy data. Linear

10

spline.
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0 124 M8 7.2 4e.6 62.0
INDY DATA

Figure 3.6, First step of knot elimination, Indy data. Linear spline.

137

> 1i6

] 128 4.8 n.2 9.6 - 6.0
INDY DRTA

Figuré 3.7. Second and final step of knot elimination. Ihdy data. -Lihear
spline., : ' :
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for 1£[0,3]. For x starting at zero, we generated 100 data points at
intervals of 1/32 up to 99/32 and added normal random noise, N(u = 0,

g = .2), the value of o the same as that used by Wahba and Wold (WW). A
graph of the function and generated data is shown in Figure 3.8, Figures
3.9 to 3.27 show graphical results of the stepdown procedure for cubic
‘_splines starting with 19 equally spacedrinterior knots, and using an F-table
value of 8.0. By examining this sequence of graphs, if becomes clear how
the elimination of knots makes the spline smoother by making it less noise

dependent.

An F-table value of 4.0 (@ = 0.05) rather than 8.0 results in stepdown
terminating with 5 knots remaining (Fig. 3.23, p. 20). The latter fit is
more data dependent and clearly inferior in terms of recovering the desired
function, Use of the larger F value thus seems appropriate and keeps the
procedure from temminating 'prematurely.” Graphs of starting and ending
fits to the data, beginning with 39 interior knots, are shown in Figures
3.28 to 3.29, and the results are roughly the same as when 19 knots are used
initially (Figure 3.27, p. 22). A phenomenon which occurs throughout most
of these fits is the downward hook in the upper range of the x's due to a
cluster of 3 data points. Figure 3.30 shows the conclusion of stepdown with
those 3 points omitted and helps to illustrate the fact that different noise

results in different fits.

The method used by Wahba and Wold to recover the function is a modifi-
cation of the smoothing technique introduced by Reinsch (ref. 2). They use
cross—validation to determine the smoothing parameter, and their resulting
fit is sho&n in Figure 3.31. Referring again to Figure 3,27, p. 22, we see
that the results of the two methods compare very favorably. A more detailed

comparison of these methods and others is made in the next section.

Smith and Smith (SS) (ref. 9) examine a scaled version of the WW
function, f(x) = 4.26 (2-3.25x - Qefé'sx + 3e—9.75x) for x€[0,1]. A sample
of size 600 equally spaced points was generated, and a variance of 0.039 (as

in SS) was used for the normally distributed zero mean noise. Results from

12
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Figure 3.8, The Wahba-Wold (Ww) function and data géﬁerated from irc.
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Figﬁre 3.9. ,Fifst step of knot elimination. WW data.
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.15

> -.37
-.88 —

4+
oo o vl o
-0t 61 1.23 1.86 2.4¢ 3.10
WW DARTA

Figure 3.10. Second step of knot elimination. WW data.

BT 81 1.23 1.86 2.48 3.10
WW DATA

Figure 3.11. Third step of knot elimination. WW data.
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Figure 3.12.
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Fifth step of knot élimination. WW data.
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‘Figure 3.14. Sixth step of knot elimination, WW data.
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Figure 3.15. Seventh step of knot elimination. WW data.
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Figure 3.16. Eighth step of knot elimination. WV data,
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Figﬁre 3.17. Ninth step of knot elimination; WW data.

17



.18

TTI ] mTrrq
+
: 4
+
+
+

> .37

TTTT7

- + A
88 ? +
—
= ,
~-1.40 "ILHHLH]J SRR lllliL]HlLllULLLHJHLU UUJ
-.01 .61 1.23 1.86 2.48 3.10
WW DATA

Figure 3.18. Tenth step of knot elimination. WW data.
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Figure 3.19. Eleventh step of knot elimination. WW data.
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Figure 3.20. Twelfth step of knot elimination. WW data.
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Figure 3.21. Thirteenth step of knot elimination. W'data.
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Figure 3.22, Fourteenth step of knot elimination. WW data.
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Figure 3.23. Fifteenth step of knot elimination. WW data.
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Figure 3.24. Sixteenth step of knot elimination, WW data.

Figure

3.25.
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Seventeenth step of knot elimination. WW data.
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KW DRTR

Figure 3.26. Eighteenth step of knot elimination. WW data.
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Figure 3.27. Nineteenth and final step of knot elimination. WW data.
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-0l .61 1.28 1.86 2.48

3.10
WK DATA

Figure 3.28.
) WW data.

-0l 81 1.29 .86 2.48
g WW DATA

3.10

Figure 3.29. Final step of knot elimination from 39 knots. WW data.

First step of knot elimination with 39 interior knots.
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WW DRTA

Figure 3.30. Final step of knot elimination with 3 data points in
upper xX-range omitted. WW data.
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Figure 3.31. Spline fit obtained by cross-validation by Wahba and
Wold. WW data. '
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two stepdown runs fitting cubic sp11nes ;re shown in Figures 3,32 to 3.33,
beginning with 19 and 49 knots. Three knots remain in Figure 3.32 with a
. slightly wigglier fit than that in Figure 3.33 with one remaining knot.
These results show that a larger knot selection ﬁool allows reduction to
p0531b1y a fewer number of final knots and a smoother fit, whlch for

simplicity, is more desirable.

Smith and Smith use asymptotic results to determine a stopping rule for
adding knots one at a time to the model. Figure 3.34 shows their results
using cubic splines overlaid on the true function. The data were not plot-
ted so that the distinctions between the two functions would not be lost.
Applying stepdown using these 9 initial knots resulted in Figure 3.35, a fit
which smooths the wiggles visible in Figure 3.34. As seen in the two
" previous figﬁres, however; using a larger pool of knots results in a
smoother and more satisfactofy recovery of the function. The SS method is
compared in more detail to both the WW and KS methods in the next

section,

The final function examined is f(x) = sin (x?) for XE[O,A.S], which
allows for more than two periods of the sine wave and gradually increases
the frequency. Three hundred data points were used with g = ,2 fbr‘the
normal noise. Beginning and ending cubic spline fits from a stepdown run’
are shown in Figures 3.36 to 3.37, starting with 19 interior knots and
ending with 9. We note that more knots are needed for the final fit than
for the functions previously discussed due to the increased curvature of the
function. Most of the wiggliness in the initial spline fit occurs on the
more gradual slope at the lower end of the x-range and is removed as knots

are removed. This phenomenon also occurs on the "flat" portion of the 58

and WW data.

In order to assess the effects of a lower noise level on the KS tech-
nique, random variables used for the noise on the WW function were generated
using 0 = .1 and .05. Final fits are shown in Figures 3. 38 to 3.39, and

referrlng back to Figure 3.27, p; 22, which shows results using 0 = .2, we

see that fitting data with a lower noise level results in more knots N

rema1n1ng at the end of the procedure. This tendency is especially striking

_ when data from the function itself .is fit, that is, when no noise 1is added

so that to

25
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Figure 3.32. Final step of knot elimination from 19 knots., SS data.
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-8 .19 .33 -60 ‘ .80 1.00

Figure 3.34. Cubic spline solution of Smith and Smith. SS data,
(Actual data not shown.)

-1 RT) 80 1.00

.3 .80
85 DATA

Figure 3.35. Final step of knot elimination from 9 knots. Cubic
splines. SS data. (Actual data not shown.)
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Figure 3.36. First step of knot ellmlnatlon with 19 knots. True
function is sin (x?).

-1.6 um;d;ummhuuruﬂu STNRCRURNERUR NN
-.0t .83 1.78 2.70 3.80 4.50
SIN DRTA

Figure 3.37. Final .step of knot elimination from 19 knots. True
function is sin (x?).
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T .8 1.23 108 2.9 .10
WM DATA

Figure 3.38. TFinal step of knot ellminatlon from 19 knots with ¢ = 0,1
in the noise. WW data.

-4l 7] . 2.9 3.10
] mm

Figure 3.39. Final step of knot elimination from 19 knots with 0 = 0.05
in the noise. WW data.
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recover the function we actually need tp'iﬁ;erpdlate. A stepdown from 19
knots results in a spline with’ {2 knots as shown in Figures 3.40 to 3.41.
Both the true and fitted functions are graphed, but there is no perceptible

difference between the two,

Wiggliness in data should be smoothed (i.e., ignored) if it is per-
ceived as noise, but should be fit if it is perceived as trends in the
underlying process.- Thus, a danger in applying the KS technique is using
too small or too lérge a pool of kndts. The former problem is.illustrated
quite well in Figures 3.42 to 3.43, where noisy data generated from sin (x2)
is fit with the KS technique beginning with too few knots to allow the
bending necessary to recover the fuhction, especially near the third peak.’
It is interesting to see that the three knots eliminated were in the lower
end of the x range where the underlying function is not wiggly. A
comparison of Figures 3.37, p. 28, and 3.42 reveals that both have 9 knots,
but a better fit is obtained from the one which began with 19 knots (Fig.

3.37): its 9 knots are more selectively and better placed.
4. COMPARISON OF METHODS AND SOFTWARE

In the previous section, two functions introduced in the literature (WW
and $S) were examined using the FORTRAN knot elimination program. The pur-
pose was to compare results, which we do in this section, in light of what
we consider to be the most desirable properties of curve-fitting with
splines. These are:

(1) good results;

(2) computational efficiency;

(3) diagnostics capabilities;

(4) user independence;

(5) ease of interpretation; and

(6) ease of use,

We also give in this section the results of using several statistical soft-~
ware packages on the Indy and WW data, fitting both linear and cubic

splines.
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. 1.0 1.8 2.9 .10
ol 4l W DATA

Figure 3.40. First step of knot elimination with 19 knots. No Noise.
WW data. : :

-0 8 1.3 2.9 .10

1.8
Wi DATA

Figure 3.41," Final step of knot elimination from 19 knots. No noise.
WW data.
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-0 .. 3.0 ¥.50

1.7 2.7
SIN DATR

Figure 3.42. First steg of knot elimination with 9 knots. True Function
is sin (x°)

L 2. 3.8 .50
SIN DRTR

Figure 3.43. Final Steg of knot elimination from 9 knots. True function
is sin (x°)
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Most statisticians have ready access to variable selection procedures,
either.in programs they have written themselves, or in widely available
statistical soffware packages. Fitting sﬁlines through knot selection with
these programs is a potential advantage of their use, which is realized only
if good-results,are obtained. A summary of the results of using four such
packages is given in Table 4.1: SAS (ref. 14), SPSS (ref. 15), MINITAB
(ref. 16), and BMDP (ref. 17). -

Table 4.1, Results of using variable selection techniques to fit
splines with four statistical software packages.

Stepwise ' St epdown

Indy wwl Indy !
SAS linear Y vy Y %
cubic v % Y Y
SPSS linear Y v Y Y
cubic v Y ' Y -2

MINITAB linear Y Y v Y
cubic v X X X
BMDP? linear X X X X
cubic X X . X X

1Selectlon pool of 19 interior knots.
Numerlcal output has some inaccuracies, but overall results are correct.
3 Tolerance cannot be made low enough to force entry of necessary terms.

In the case of stepwise procedures, accuracy-was determined by comparing
outputs for the various packages among themselves, while outputs for the
stepdown procedures were compared w1th the FORTRAN B-spline knot ‘elimination
_program. Results are surprisingly good considering the fact that the '"+"
‘function basis must be used. Entries marked with an "X" indicate failure to
produce accurate results or, sometimes, any results at all due to high

multicollinearity in the models or low tolerance, especially in stepdown.
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The minimum toleraﬁce allowed for SPSS, 10712 had to be used to force entry
of some of the polynomial terms or to get results 'in stepdown. TFor BMDP.
the tolerance of 0.0] for variable selection was not low enough to force
entry of necessary terms to get results for any of the cases considered. As
expecied, less trouble was had with fewer knots (Indy data), lower degreé
(linear), and simpler models (stepwise). Stepdown gave accurate results in
several cases even for a large number of knots, but there are limitations. '
For inst;nce, computational problems wére encountered by SAS for the cubic
WW data with 39 knots. The final models determined by stepwise and step-
down, however, were either identical or Very similar. The occasional user
of splines could thus éafely rely on stepwise procedures from one of several

packages to give good results.

Table 4.2 coﬁpares several spliﬁe-fitéing methods: Wahba-Wold (WW),
Smith=-Smith (SS), and'knot selection (KS). As the latter method may be
imélemented through several different computer programs, two statistical
packages and the FORTRAN knot elimination routine are included. All methods
give good results for the data examined, though as seen in earlier discus-
sion, care must be taken when using the statistical packages, especially
for stepdown. Their use of the '"+" function makes them computationally
inefficient and can cause severe problems. They are handy, however, for the
occasional user as is the WW method which is available as an IMSL subroutine
(ref. 18). The KS techniques depend on setting an « level for the hypo-
thesis tests aﬁd specifying an initial pool of knots but are otherwise user
independent. The WW method is 'completely automatic,” while the SS method
depends on user application of the stopping criterion. The KS approach in

general produces results which are casier to interpret.

Results from this section and from Section 3 show that splines
fit by knot selection recover the underlying functions quite well and
compare very favorably with the results of Wahba and Wold and improve upon
those of Smith and Smith, -Thougﬁ somewhat‘simplistic, the knot selection
approach provides an alternative to the method of crbss-validation and
offers a great cbmputational savings. Invaddition, there is the possibility
of analytic or physical interpretation in many modeling situatilons, an

exanple of which is given in the next section.
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Table 4.2. Comparison of spline-fitting techniques
and software, '

Knot Selection

' » B-Splines
Desirable Properties w 8§ SAS SPSS FORTRAN
Good results 4 4 4 - Y
Computational efficiency v Y X X -
Diagnostics capabilities X X 4 4 Y
User independence Y /- V- V- » V-
Ease of,iﬁterpretation , X X 4 4 Y
Ease of use occasionally Y - X v-1 Y X

lsas is available only on IBM-compatible machines.

5. SOME SPECIAL APPLICATIONS

Probably the most useful application of the KS teéhnique is data-
smoothing, and in Section 3 we saw several examples of recovering underlying
functions from noisy data. A variation that is useful in simulation
experiments is smoothing the sample quantile function. This _
function is a left-continuous step function defined as Q(u) = x(i)‘fdr
(i-1)/n < u € i/n, wvhere n 1is the sample size and X is the 1i-th
order statistic. Experimental conditions can be simulated by generating
data which behaves like the original, and a smoothed sample quantile
function provides a coniinuous distribution from which to draw the simulated
data. An advantagé of smoothing :hersamplé quéntile function, rather than

its pseudo-inverse, the sample cumulative distribution function, is that the

“former always has domain [0,1] regardless of the type of distribution.
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Programming can thus be standardized, as, for example, in the determination

’

of the original knot selection pool.

The KS technique is also useful in modeling. . For example, stepwise
regression has been applied successfully by Klein, Batterson, and Smith
(ref. 19) to model flight data using splines. They use "+" function terms
defined in the anglg-of—attack_variablé in a Taylor series expansion of
force and moment coefficients in brder to model longitudinal motion of an
airplane. One of their simple "spline-modified" Taylor series expansions of

the vertical aerodynamic force coefficient C, is given by

c =¢ (a) ,
z z

+C (a)q'+C
q z z
8

(a) &
0 q 8 e

=0
e

where

. u
Cla) =C(a=10)+C  a+ L
Z z A =

Ua [ 0
c (a) = ¢ + I D,la- a,)
% s, 4= . 27+

and a 1is the angle of attack, q' 1is the nondimensional pitch rate, Be
is the elevator deflection? Cz = 302/33, Cz = 3Cz/aq', Cz = acz/aﬁe.
a : q Ge
They then use stepwise .regression to select terms, and thus knots, in the
model.,  This spline representation preserves the concept of stability and
control derivatives inherent in the usual Taylor series expansion of aero-
- dynamic coefficients but has the advantage of préviﬁjng a representation of
C; over an extended range of the angle of gtpack_-a. ‘A global godgl over

the observed ramge of a 1is thus obtained through the use of splines.
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6. OTHER USES OF VARIABLE SELECTION PROCEDURES IN SPLINE RECRESSION

Thus far we have emphasized the use of variable selection to choose the
number and location of knots. There are other possible; but perhaps less .
useful, "extensions" to spline regression of variable selection procedures
based on polynomial or multiple fegression models. In the latter cases, the
purpose is to detefmine the polynomial degree and the important independent
variables and interactions. This 1s accompliéhed by examining the
contribution of individual terms in the model. With univariate spline
models, however, there are several polynomial pieces, not just one, whose
degrees may be examined, and, as seen previously, we may examine the
importance of each knot. Also, one may wish to examine the contihuity
conditions at one or more breakpoints as in the example discussed by Smith
(ref. 11), Thus, the complexity of the spline model over the polynomial
model manifests itself in“fhe greater number of ways the dimension of the
spline parameter space may be altered. Splines in several variables present
even more possible diversity since, for example, two-variable spline
continuity occurs not across points but along lines connecting grid

points.

While it might be nice to have a single software package which could
perfom any combination of these spline hypothesis tests, it is neither
feasible nor desirable. The major reason is that variable order splines,
i.e., splines with polynomial pieces of different degrees, have not been
sufficiently researched by mathematicians to allow for the satisfactory
construction in a general framework of a basis uéing either-"f" functions or
B-splines. Lowering or raising the degree of a single polynomial piece must
be accomplished by applying restrictions to the model, and hypothesis tests
must then use restricted least squares. In simple cases this may be
"straight forward (references 11 and 20), but in general the task is unmanage-
able.  For example, the user is subject to hidden analytical errors as when
the regression or hypothesis degrees of freedom are not eqﬁal to the number
of restrictions because some restrictiéns are obtained automatically through
linear combinations of others. While theoretically suéﬁ-depéndeﬁcies can be

checked, the usual methods would need some revision in the case
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of B-spline regression since hypoﬁheses.involve values of the fitted spliné
or its derivatives (ref. 12). In the case of the "+" function basis, most,
but not all, of the individual terms are meaningful. waever, the innocent
yet indiscriminant selection or removal of terms through hvpothesis tests
can result in fits which are statistically valid vet nonsensical because
they are uninferpretable in terms of polynomial degree or knot locations
(ref. 11). Because of these various difficulties, it is reasonable to con-

struct task-specific procedures,

The application of variable selection to knot selection, as in the
examples in Section 3, is useful for smoothing data with a fixed order
spline with max imm continuity conditions. 1In these cases the interest is
not 1in the spline order but rather in decarﬁining the minimal number of
knots deemed adequate to faithfully represent the data. Cubic splines are
popular because of their low degree and second derivative continuityv. The
selective use of forward or backward algorithms in some statistical software
packages using "+" functions (see Section 4), or the backward elimination
FORTRAN program developed here using B-splines, may be used for this

purpose.

Another possible "extension" of variable selection to splines is the
determination of the polynomial degree while keeping the number and location
of knots fixed, that is, not consider the knots as "variables'" to be either
entered or removed. Because of the difficulties with variable order splines
discussed above, we must restrict ourselves to polynomial pieces of the same
degree. Unfortunately, even further constraints are necessary for this
version. The ideal situation would be to compare a maximally continuous

k=2 . . ' . . .
(C )k-th order spline, i.e., a k-th order spline with continuous f,

1 k-2 . . : k-3
f( ), .f( ), with a maximally continuous k-1-st order spline (C }.

A formal test, however, 1is not possible. This can be easily seen Sy consid-
ering a specific example using the partial ordering of some spline models
given in reference ll1. Basis elements for ¢ andr’C1 quadratic splines
and for (° 1linear splines with one knot are shown in Fig. 6.1. A compari-
son of orders 3 and 2 (degrees 2 and 1) which retained maximum continuity

conditions would require comparing the ¢l quadratic with the ¢% linear.
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cd quadratic
1,x,x2,(x‘t)+2,(x‘t)+

¢9 linear

Clguadratig
l,x,(x't)+

l,x,xz,(x‘t)i

Figure 6.1. A partial ordering of some spline spaces.

Neither is 4 subspace of the other, hdwever, so they cannot bé formally
compared (via testing). A solution of a sort is available if the ¢0
quadratic and the @ linear are compared, since, as can be seen from the
figure, the @ linear basis generates a subspace of the ¢d quadratic

space.

In general, a test to compare spline orders can be made between splines

of order k and k;l, both having conﬁinuity Ck-3. In the case of cubic
splines, for example, we could allow continuity of the function and its
first (but not second) derivative in order to determine whether the order
could be reduced from & to 3 or inéréased from 3 to 4. Since a C! cubic
has sufficient smoothness (at least to the eye), the procedure is not so
objectionable. Considerably less satisfactory, however, are the cases for
linear and quadratic splines. In compariné splines of order 3 and 2 as seen
~in Figure 6.1, the quadratic spline would be continuous but not its first
derivative while in comparing splines of order 1 and 2, the linear spline
would not even be continuous.  Of course, the results of formal tests can be

used in combination with informal comparison between SSE's of the models of

interest to decide upon an acceptable model, and we recommend this approach.

A backward elimination FORTRAN program using B-splines has been devel-
oped for the purpose of reducing spline order using the nesting of some
”Sub-optimal" spaces as described above. Details for the appropriate B-
_spline hypothesis tests are given in referencé 12. The listing, documen-—
tation. and flowchart for the program are given in the Appendix, and ve
illustrate its use with the Indy data. While some statistical software

packages could undoubtedly be used by defining "+" functions as in knot
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selection, no attempt was made to usé them in”this context. However, using.
the results of Section 4 as a guide, we surmise that several backward elimi-
nation procedures would be suspect while most forward selection algorithms
should give fairly accurate results. Again, tolerance levels may have to be

made small in order to force entry of certain terms.

Figure 6.2 gives the FORTRAN program output for stepdown order selec-
tion on the Indy data starting with a cubic spline (order 4) with the two
knots in mid-WWI and WWII as in Section 3, The program compares splines of
different order with the same continuity conditions, though other fits are
given for information purposes. For this example, order reduction is made
from cubic to quadratic to linear. Estimates of the B-spline coefficients
and their standard errors are given for the spline of lowest order which can
adequately fit the data, and the highest continuity conditions are imposed.

For this case it is the @ linear.

A graphical display of thesé results is quite helpful, and Figure 6.3
shows a partial ordering of the relevant spline spaces along with hypothesis
test results and SSE's from the program. The dotted lines indicate the
stepdown comparisons we wish to make, while the solid lines indicate those
we can actually make through formal comparisons (tests). The importance of
user input into the variable selegtion process 1s becoming more widely
recognized, and here especiallyv, because the formal tests available are not
exactly what we would like. Consequently, we recommend the use not only of
the formal tests, but also of informal comparisons between SSE's (or MSE's)

of competing models using a display such as Figure 6.3.

We illustrate this technique by going tﬁrough Figure 6.3 step by step,
and we will discover some interesting characteristics of splines alongithe
way. We first observe that while a formal test is not possible between the
@ cubic and the ¢! quadratic, it would not even be necessary since the
d quadratic has a smaller SSE than the C® cubic. A better fit is thus
obtained with a lower degree! This phenomenon could never happen with-poly;

nomials, but such are the vagaries of splines. An informal comparison in
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mmmmmmtxﬁ:mm

THE SMOOTHEST SPLINE OF ORDER K= 4 WITH MAXIMUM CONTINJITY c2
HRS SSEe 385.29003218 AND MSEs 7. 86306290

CAN ORDER Ke 4 WITH SUBAXIMM CONTINUITY C &
BE REDUCED TO ORDER Ke 3 WITH MAXIMUM CONTINUTIY € 1 ?

YES.
FORKed4 ADC I
FTABLE VALLE = 4, B OBSERVED F« 1.27322583

SSE- 348.34966208 MSke 7.4116345%4

HOK OISR O RO A IR HOK S K IOICIOIIOR

T SMOOTHEST SPLINE OF ORDER Ke 3 WITH MAXIMUM CONTINUITY C 1
HRS SSE= 376.65954630 AND MSE- - 7.53319693

CAN CRDER K= 3 WITH SUB-MRXIMUM CONTINJITY C @
BE REDUCED TO ORDER K= 2 WITH MARXIMMt CONTINUTIY C @ ?

YES.

FRKe3 ARDCEBO
FTABLE VALLE = 4. 020 OBSERVED F» 3.69172563
SSE. 368.45371268  MSE- 7.676119%1

42 24 A NOIOKNOIOII IOKOIIOICIOK KK ACACIOIIOKR A0K AOKK 0 30K X A0k K

THE SMOOTHEST SPLINE OF ORCER K= 2 WITH mAXIMM CONTINJITY € 9
HAS SSE- 453. 46800846 AND MSTe 8.89153115

CAN ORDER K= 2 WITH SUB—MAXIMUMM CONTINUITY C-1
BE REDUCED TO ORDER K= 1 WITH MAXIMUM CONTINUTIY C-1 °

NO.
FOR K= 2 AND C-i ' !
FTABLE VALLE = 4, G0C3033 OBSERVED F = 285. 469255%6

SSEe 328.52409313 MSE. 6. 78457333

PROCEDURE TERMIMNATES. S0k sokotormsi i pombon ik

PROCEDURE TERMINATES WITH L 3; K= 2; C O

N COEF ST. ERR.
1 73.61675883 2.19888373
2 88. 49577629 1.11724005
3 114.97961700 . 84655257
4 157.47846182 1.10991357

sfociioiocooliooike FURTHER INFORMATION  soxasusoioiokk
FOR K» 1 AND C-~-1
SSE»  6R@79.37277252 MSEe 116.73793793

Figure 6.2. Output for order reductiion. Indy data.
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Cleubic cO quadratic E:l_linear
348 368 - 328
not - ) / \ not - / \ :
- — . —— .
sig. / sig. - -—siz.
€? cubic cl quadratic c0 linear - ¢! constant
———=> —_——— —— = i -
385 376 453 6070

Figure 6.3. Partial ordering of spline spaces including SSE's
and results of order reduction tests. Indy data.

in going from the C! quadratic to the C° linear reveals an increase of
77 in the SSE. While this increase cannot be formaliy judged insignificant,
we may wish to draw such a conclusion based on the results of the formal
test which compares the 0 quadratic with the C? 1linear: the larger
increase of 85 is insignificant in that case. Having thus "safely" arrived
at the 9 linear, we must decide whether to further lower the order. The
very large F value (285) from the program output which compares the C~!
linear and the C~! constant splines reveals the importance of the linear
trend. The big increase of 5742 in SSE from the ¢C~! 1linear to the ¢~!
constant is thus highly significant, and since the increase of 5617 from the
€% linear to the C~! constant (the desired comparison) is only slightly

smaller, we conclude that the use of a constant spline fit is inadvisable.
7. SPLINES IN SEVERAL VARIABLES

A mathematical theory for splines in several variables is still devel-
oping, and a "'satisfactory" basis even in two variables has not been found.
However, tensor products of either "+" functions or B-splines can be used to
form a splihe basis in several variables. While a tensor product basis is
somewhat clumsy-and,its interpretation difficult, we explain here some theo-

retical aspects of its use for the two variable case and give an example,

=sid
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As in the example in Seétiéﬂ 5; éugbiiﬁé—modified Taylor series expan-
sion can be used to model aerodynamic force and moment coefficients. This
time, however, Klein and Batterson (ref. 2]1) use splines in two variables,
the angle of attack a and the sideslip angle 'b, to approximate the lat-
eral force coefficient and the rolling and yawing moment coefficients. They
use the yawing moment coefficient C, as a tyﬁical example, and Cp

can be expressed as

Cc =¢C (a,b)
n n- § = .
a r p r

(7.1

where p and r are the rolling and yawing velocity and §; and §;

are the aileron and rudder deflection. They approximate the function C,(a,b)

by
21 Lo
Cf(a,b) =C +Cb+ L (A . +4A b)a-a)
n 1 , o1 Ia i+
i=l
L2 ~ 1y £2
+ B _(b-b),+ I I D .G-b) (a-ad] (7.2
j=1 °J i=1 j=1 ] e

while the remaining functions in (7.1) are approximated by splines in a
alone. Results from a stepwise regression using these terms are not as good

as in the one-variable case, and some fine-tuning remains.

From a theoretical point of view, the tensor product basis does not

have the nice interpretation of knots and continuity constraints as in the

one-variable case, even using ''+"

functions. There is, however, a one-to-
.one. correspondence between two-variable "+" function terms and grid points,
or nodes, and for this reason, we use the term node basis to refer to tensor
ll,‘_"

H+ll

products of the function basis. As before, we use right-continuous

functions so that 0° is 1. Tensor products of B-splines may also be used to

43



ORIGINAL PAGE S
OF POCR QUALITY
construct a basis for splines in two variables, and we shall see that the

same advantages and disadvantages of the one-variable case carry over.

We discués the simplest two-variable case in some detail: first order
splines, i.e. step functions. Their application is somewhat limited, but
there are several reasons for their detailed consideration. First and fore-
most, splines in two variables are difficult to envision and manipulate, and
consideration of the simplest case, namely constants, is thus highly desira-
ble. Second, as seen in the example above and in Section 5, the estimation
of aerodynamic force and moment coefficients using a spline-modified Taylor
series expansion reveals the importance of using constants from both inter-
pretative and numerical points of view. Finally, the two-dimensional cumu-
lative distribution function is a first order spline in two variables.

Thus, the constant case, while limited, has already shown its usefulness.

‘We first discuss the node basis by way of example. Suppose breakpoints

in the x wvariable occur at x;, x,, X3 and in the y variable at Y1

and y, for data in x, < x <x, and y,; <y <y;. A"+ function basis

of order 1 in the x variable is (x - XO)S""' (x - xa)f and in the vy
variable is (y - yo)f,..., (v - yz)f, The tensor product basis is formed
by taking all the 4 x 3 = 12 products (x - xi)g (y - yj)f, 1=0,..., 3;
j =0,..., 2. Each basis element in the two variables is thus a plane of

height one bounded below by the line y = Yj and on the left by the line x
= xj. Its support is thus a quadrant of a sort (\g\]. We call the
intersection of these boundary lines, the corner of the quadrant, a node,

denoted *ij, Figure 7.1 shows the relevant grid and nodes. Through any

Y3 l
T
S

Figure 7.1. Nodes for a tensor product of "+" functions.

]
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variable selection procedure, a model may be found whose terms are a subset
of the 12 basis elements. Such a selection might result, for example, in

the nodes shown in Figure 7.2 with the statistical model
flx,y) = Booxoyo, * Booxo,y2, + Brixy,ya,
+ B2ix2, y1+ * Booxp .y, + B32x3,y2, + €,

where x is an abbreviation for (x -'xi)g (y - yj)Q. We saw earlier

i+Y 5+
the application of this technique to aerodynamic modeling.

L
J.

XO Xl X2 X3 XL’

Figure 7.2. Nodes resulting after variable selection on
a tensor product of "+" functions.

For splines of higher order, the same principles apply in forming the
basis elements: they are the tensor product of one-variable "+" functions.
Knot multiplicities in one variable result in node multiplicities in several
variables. The absence or presence of a node or node multiplicity corres-
ponds to the absence or presence of a certain basis element. There is thus
some carry-over from the one-variable case in interpreting the role that
basis elements play, and also in the fact that standard variable selection
software may be used. The major drawback of this'basié, as in the one-
variable case, is computational. The basis elements do not have small

support, so that roundoff errors get worse as computations increase.

The computational difficulties present in the node basis lead to con- .
sideration of. tensor product B?splines. While the formulation of the latter
basis is straightforward, its interpfetation‘and use in ﬁodel selection
through hypothesis tésts'are not. The polynomial degree and importance of
knots in modeling are considerations that carfy over from one to several

variables, and unfortunately, so do their difficulties when using B-splines.
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To compare differences in the two-variable case between the node basis
and B-spline basis, we consider a simple grid with nodes indicated (*) in

Figure 7.3.

Y2

2 4
Y1

1 3
Yo

XO Xl X2
Figure 7.3. Nodes for model (7.3).
The statistical model for first order splines is thus

£(x,y) = Booxo,yo, * Boixo,y1, + Frix1,y1, *+ €. (7.3)

The function is a "true" spline in both variables except when velyg yy)s
for then f 1s constant over (xo,xz). If this model is represented with
B-splines, each cell i 1is the support of a right-continuocus plane which
has height 1. Using the notation Bi(x,y) for the basis element for each

cell i, the model may be written

f(x,y) = BiBi(x,y) + € subject to B = Bj.

1

R [ I S

i

This B~spline model is somewhat more complicated than the "+" function basis
in its representation because of the model restrictions. It is also not
obvious how to interpret the B-spline coefficients in terms of the presence

or absence of nodes.

These simple examples illustrate that the "+" function terms are iden-
tifiable and meaningful on a grid as nodes, just as they correspond to knots

in the one-variable case. They thus hold an advantage over the tensor
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product of B-splines from an interpretative point of view. As B-splines
hold the computational edge, however, it would be desirable to identify the
linear combinations of B-splines which correspond to the presence or absence
of nodes. The interpretétion and use of tensor product splines of higher

order is more difficult and remains to be examined in detail.
8. SUGGESTIONS FOR FURTHER WORK

There are potential research areas for both the univariate and multi-
variate cases. In the univariate case, an efficient stepwise computer rou-
tine using B-splines could be developed. This would give the user the
choice of forward and backward procedures with a computationally efficient
basis. The use of knot selection to fit dgté with loops could be investi-
gated, and approaching the problem using the parametric technique of Smith,
Price, and Howser {(ref. 22), seems feasible. The successful use of splines
in two variables has already been demonstrated (Section 7), but further work
remains such as investigating fits to known underlying functions like we
have done in the one-variable case. Two-dimensional pictures in this case
would be most helpful. Also, while the multivariate mathematical theory is
still developing, interpretation of tensor-product bases from a statistical

perspective could continue from that begun in Section 7.
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APPENDIX

Program Documentation

Two FORTRAN programs have been written which édapt stepdown procedures
to B-spline regression. One program is for knot elimination while the other
is for reducing the spline order. Theoretical details and appropriate ref-
érences are given in Sections 2 and 6. The.programs are written in FORTRAN
5 and have been implemented on both the ODU DEC-10 and the NASA/Langley CDC
Cyber ;omputers. Notation is patterned after that of de Boor (ref. 1), and
definitions of parameters are given in the subroutine VL2NT, the second
subroutine called. All necessary input is read in or specified in subrou-
tine DAT1: the data, sample size NDATA, (initial) spline order K = degree
+#1, (initial) interior breakpoints and endpoints BREAK(+), number of conti-
nuity conditions V(+) at the breakpoints, number of intervals L = # interior
breakpoints +1, and tabled F wvalue to be used in hypothesis tests. For
equal spacing, the breakpoints and continuity conditions are most easily
specified through a DO loop. Variables are dimensioned by one of thrae

parameters (defined in comment statements) which are specified in the PARA-

METER statement at the beginning of the main program.

Pata must be interior to [BREAK(1), BREAK(L+1)]}. For the Indy data,
‘X min = 1 and X max = 61, so we arbitrarily set BREAR(1l) = O and BREAK(L+1)
= 62, V(I) is the number of continuity constraints at BREAK(I). For.
examﬁle, V(1) = 0 means that the spline is discontinous at BREAK({l) while
V(2) = 3 means there are 3 contiguous continuity conditions on the spline f
at BREAK(2), {.e., f, f7, and f" are all continuous at BREAK(2). Note that
V(1) must be less than or equal to K-1 in order to have a “true” spline,
not a polynomial, across BREAK(I). We always set V(1) = 0, though only for
"gymmetry" in the endpoint conditions, and V(L+1) need not be specified

since it is never used nor referred to.

The subroutine FLAG is designed to catch user input errors which would
otherwise cause the program to terminate abnormally or give inaccurate
results which may or may not be obvious to the user. Sample output detect-

" ing errors in the input information of the Indy data is shown in Figure

A.l.
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THE ORDER K » 4
THE ¢ INTERVALS L = 3
THE DIMENSION N = S

BREAKPOINTS CONTINUITY COMDITIONS
- 8

33, Se00600 4
7. SO0 3

KEND( )= 4
KENDC )+ - 4

n
[l
VONh W Aumné

BREAKPOINTS MUST BE STRICTLY INCREARSING.
BREAKPOINT 33.50000080 IS NOT LESS THAN BREAKPOINT

THE NUMBER OF CONTINUITY CONDITIONS MUST BE STRICTLY
LESS THAN THE SPLINE ORDER K. v( 2)= 4
AT BREAKPOINT 33.50000000 IS TOO LRRGE.

X VALUE OUT OF RAINGE.
x( 1) 1.00000000 IS NOT IN THE RANGE BREAK(1)s.
TO BREAK(LAST) = 62 . S0

STEPDG¢GGQ9OT PROCEED. PR&J¥¥1QBORTS

Figure A.1. Sample output detecting input errors.

7 . SEa000

S. 20RO

Indy dacta.
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Several lines in the programs are for plotting only. These are calls

to the CDC system subroutines PSEUDO, INFOPLT, and CALPLT and the DO loop 10

which calculates the spline values at the knots.

For the knot elimination routine, input data and subsequently
calculated information are printed by means of subroutines DAT1 and OUTNTS.
This includes dat&_values, spline order, number of intervals, dimension of
the spline space, and knots. At each step of the procedure as indicated by
the number of intervals L, the F-ratios for the importance of each
breakpoint are given along with the SSE and MSE. If a breakpoint can be
eliminated, it is specified and the procedure continues to stepdown. If no
breakpoint can be eliminated, the resulting number of intervals and spline
order are given along with a list of the values of the B-spline coefficients
and their standard errors. Sample output appears in Figure 3.1, p. 8, in

Section 3.

As in the knot elimination program, the subroutines DAT1 and OUTNTS of
the order reduction routine print input data and subsequently calculated
- information. In addition, at each step, the printout gives the SSE's and
MSE's for two splines of order K, one with continuity CK—2 and the other
with continuity CK-B. The hypothesis test is described in words with the
results of the F test indicated. When further order reduction is not
possible; estimates of the B-spline coefficients and their standard errors
are given for the spline of lowest acceptable order with highest continuity
imposed. Additional information is given by including the SSE and MSE of
the next lowest order spline. 'Sample output for the Indy data appears in

Figure 6.2, p. 41,

Flowcharts are given in Figures A.2 to A.3 followed by the program
listings. A full listing of the knot elimination program from a CDC Cyber is
given, including the subroutines of de Boor (ref. 1) that are used. For the
ovder reduction program we list only the main program and the subroutine

SSHYP2, a variation of SSHYP appearing in the first program.
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(e )

Read data,

bxeakp01nts
DAT1

sequence
VL2NT

: Get knot

-

4

Preliminary
output
OUTNTS

Check parameter
values
FLAG

\

NG =

Output errors.

IE3 Program Aborts

NO
Fit data

LSTSQL
BSPLPP

Figure A.2.

ERRL?1

Number of
intervals

Flowchart for knot elimination program.
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f

Test hreakpoints
Do 5

1

Get SSH
CNTRST
SSHYP

Priat
F-ratios
Yreakpoints

Output
breakpoint . L=L-1
eliminated :

min. F-ratio
<{FTABLE

/5utput no more
breakpoints
/ eliminated

Outnut o\

‘ coefficients and
tandard errors
\
1
=

UASE

Figure A.2. (concluded).
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- Read data,
breakpoints /
/' DATl
V(e) = K -1 /

y

Get knot
sequence
VL2ZNT

4

Preliminary
output
OUTNTS

Check parameter
values
FLAG

YES Output errors.
Program Aborts END ‘:>

NO

Set
IEND = 0

Y
it data
LSTSQl
BSPLPP
ERRL21

/;utput results “‘j>
: END

for extra fit

Figure A.3. Flowchart for order reduction program.
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tEs [Output resuits
for final fit

STDERR

utput results
of smooth
spline fit

Test for
lower degree V(e) =K -1
SSHYP2 Call VLINT

SetV()"K‘
Call VL2NT

NO
F

A

Output:
Degree can ba
reduced

K=K-1
Set V(*) =K -1 Call VL2NT
Call VL2NT

o

Figure A.3, (concluded).
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KNOT ELIMINATION PROGRAM LISTING -

PROGRAM XPLOT (INPUT, QUTPUT, TRPES=0UTPUT, TRPE2D, TRPE21, Tmczz)
STEPDOWN FOR BREAKPOINT EL IMINATION FOR FIXED ORDER K.
THE FUNCTION AND ITS FIRST K-2 BCRIVRTIVES MUIST BE CGYTIN..O.S

IS AT LEAST THE SAMPLE SIZE, NDATA.
IS AT LEAST N. WITH MAXIMUM CONTINUITY CONDITIONS,
NeL+k-1. WITH NO CONTINUITY CONDITIONS, NeLeX.

KTN'RX IS AT LEAST K.

QOaOO0O0O0OON

PRRAMETER (NMRX = 108, NDMRX =200, KTNMRX = 2800 )

REAL BOOEF (NRX), Q(KTNMRX), DIAGIKTNMRX), T(NDMAX)
DCOEF (NRX), BRT(NMRX), BLF (NMRX), F(NDMRX)

CTRAST (NMRX) , RACNMRX, NMRX),  ERROR(NDMRX)

MSE, MSM, SE(NMAX),FRATIC(NMARX)

BB(NMARX, NMRX) , LIW(W NMRX), F?(NW)

INTEGER emnr b-ﬂ' v, KEND (NMRK)

COMON /DATA NlnTQ. X(NDMRX), Y(NDMRX), FTABLE

COMMON /RPPROX/ BREAK(NMRX), W(M), L, K, VINRX)

JOOUNT =@
C ENTER DATA
CALL DAT1(ICOUNT)

C GET THE KNOT SEQUENCE
CALL VIaNT(BREAK,L,K,V,T,N,KEND)
C PRELIMINARY OUTPUT
GLLO.H'NTS(KR(VLTN,KOGM))

CHECK INPUT DATA
IFLAG=-8
CRLL FLAG(IFLAG,N)
IF(IFLAG .EQ. 1) GO TO 25

CALL PSELDO
C TEST FOR CONTINMUOUS K-1-ST DERIVATIVE AT E£ACH KNQT
JOERIVeK~1 .
1 FMINeFTARBLE
LM1=L-1

C GET THE LEAST SQUARES FIT, I.E., TFEB—S"LI?ECGFFICIDITS
CFU.LSTSQI(TNKQDIM KCEF)

L K K
- e w W

C LSTSGIGLLSBS’LVB BOFAC, AND BOHSLY
C GET SSE AND MSE
ERRDF «NDATA-N .

MW(TWNKDI%MCWL)‘
mmznrmmw:
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¢ ERRL21 CALLS PPVALL WHICH CALLS INTERV

LPLel#1 .
DO 18 Ie1,LP1 | :
FB(1)=PPVRLU(BREAK, COEF, L, K, BREAK(I), @)
10 CONTIME

CALL INFOPLT(Q,NDATR,X,1,F,1,0.,62.,74.,158.,1.,9,

] SHINDY DARTA, 1, 1HY,9,5.,4.,.75,.75)

CALL INFOPLT(B,NDATR,X,1,Y,1,0.,62.,74.,158,,1.,9,

* SHINDY DATA, 1, 1HY,22,5.,4.,.75,.73)

CALL INFOPLT(L,LML, BREAK(2),4,FB(2),1,8.,62.,74.,158.,1.,9,
x SHINDY DATA,1,1HY,1,5.,4.,.75,.75)

IF(L NE. 1) GO TO 12
WRITE(2D, 11) SSE,MSE |
11 FORMAT(,/7* SSE=’,F16.8,5%, "MSE=’,F16.8) -

GO TO 9
C TEST IMPORTANCE OF EACH BREAKPOINT
12 WRITE(28,2) L,FTRBLE, SSE, MSE
2 FORMAT(/r/? La’,13,5%, 'F-TARLE VALLE IS’,F16.8,//

* ' SSE=’,F16.8,5%, 'MSE=" ,F16.8-/
m F-RATIOS ARE: BREAKPOINTS ARE’)

3 D0 S II-2,L
ID=I1 -
CALL CONTRST(ID, JDERIV,N,K,L, T, BREAK, KEND, BRT, BLF, DCOEF
* , CTRAST). )
c CNTRST CALLS BCONT
CALL SSHYP(BCOEF, CTRRST, G,K,N, BRT, VAR, SSH, MSH, HDF )
C ) SSHYP CALLS FORSUB
FRATIO(II) =MSHMSE
WRITE(29,4) FRATIO(ID), BREAK(II)
4 FORMMT(ZF16.8) '
IF(FRATIO(II) .GE. FMINY GO TO S
FMINSFRATIO(II)
KNOT-11
S CONTINLE

IF (FMIN .LT. FTABLE) GO TC 7
WRITE(2D,6) o
6 FORMAT(/’ NO BREAKPOINT CAN BE ELIMINATED’)
GO TC 9 :
7 FMINFRATIO(KNOT)
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WRITE(29,8) BREAK(KNOT)
8 FORRT(//’ BREAKPOINT’,F7.3,’ IS ELIMINATED')

C RELABEL KMNOT SEQUENCE T RS WELL AS BREAK, KEND, AND V
CALL REXMNOT(KEND, KNOT, N, K, L, T,V, BREAK)

GO TO 1

C PRINT RES.LTINS,CKFICIWS, STANDARD DEVIATIONS, AND F-VALLES
S CALL STDERR(Q, BCOEF ,K,N,L,MSE, DIRG, AR, SE, LINV)
C STDERR CALLS BCHINY AND MATVEC.

CALL CALALT(D.,8.,999)

25 STOP
END
C INDY DATA
SUBROUTINE DATL(ICOUNT)
COMMON STATEMENTS /DRTR, AND ~APPROX/ ARE USED.
C

C THIS SUBROUTINE READS IN THE DRTA AND GIVES THE NUMBER AND
C PLACETENT OF THE KNOTS FOR THE FITTED SPLINE.

PARAMETER (NMRX=100, NDMAX=208, KTNMAX=2008)
INTEGER V

REAL Y, X

COMMON ~ DARTA ~ NDATAR, X(NDMAX), Y(NDMAX), FTABLE
COMMON / APPROX » BREAK(NMARX), COEF (KTNMRX), L, K
b , YINRX) '

NDARTA = 55
WRITE(29,5)
S FORRAT(’ INDY DRTR’//’ YEAR Y xX*)
DO 1 I=1,NDATA
READ(21,4) YEAR,Y(I),X(I) -
4 FORMAT(I4,1X,F7.3,1X,F2.@)
WRITE(Z9,2) YEAR,Y(D), X(ID)
2 FORMAT(I4, I1X,F?.3,1X,F3.8)
1 CONTINLE

C GIVE THE ORDER X AND NLMBER OF INTERVALS L
K = 4
L3
FTRBLE = §.00

C GIVE THE BREAKPOINTS AND CONTINUITY CONSTRAINTS
BREAK(1) = 8.
BREAK(2) = 7.5
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BREAK(3) = 33.5
BREAK(4) » &2,
V(1) «@
V(2) = 3
V(3) « 3

_ RETURN
END
SUBROUTINE VLNT (BREAK, L, K,V,T,N, KEND)
COMPUTES THE KNOT SEQUENCE T AND DIMENSION N FROM THE BREAKPOINT
C SEQUENCE BREAK, GIVEN THE SPLINE ORDER K, THE NUMBER OF INTER-
VALS L, AND THE NUMBER OF CONTINUITY CONDITIONS V(I) AT BREAK
(.

P U T ook

reee, BREAK(L+1), ... THE BREAKPOINT SEQUENCE.
NUMBER OF INTERVALS.

ORDER OF THE SPLINE.

(2),...,V(L).., . THE NLMBER OF CONTIMNUITY CONSTRRINTS AT
BREAK(2), ..., BREAK(L).

*

i

-
S

AR

QOOOOO0OMNOOON
<X

C T, ..., TINSK) .., . THE KNOT SEGQUENCE.

C N....THE DIMENSION OF THE SPLINE SPACE OF ORDER K.

C KEND(I)....THE INDEX OF THE LARGEST KMNOT EQUAL TO BREAK(I)
c

Cwwxoem M E T H O D aomowonn

THE FIRST K KNOTS ARE SET EQUAL TO BREAK(1). THE KNOTS ARE
THEN SEQUENCED SO THAT K - V(I) KNOTS ARE AT BREAK(T) WITH-
KEND(I) EQUAL TO THE INDEX OF THE LARGEST KMNOT AT BREFK(I).
N IS SET EQUAL TO XEND(L) AND THE LAST K KNOTS TN+1), ...
TIN#K) ARE SET EQUAL TO BREAK(L+1).

INTEGER K,U,N,I,v(1),7, ISTART, ISTOR, KEND(1)
REAL BREAK(1), T(1)
C SET THE FIRST K KNOTS EQUARL TO BREAK(1).
DO1 T+, K
1 T(I) = BREAK(1D)

OOCOOOO

C

C FIND THE INDEX KEND(I) OF THE LARGEST KNOT EQUAL TO BREAK (D),
KEND(1) = K
DO21s2, L

4 KEND(I) = KEND(I~1) + K - v(I)

SET TUEND(I-1) + 1) =,..=» T(KEND(I)) = BREAK(I).
D011 =2, L -
ISTART » KEND(I-1) +1
ISTOP = KEND(I) .
DO 11 J = ISTART, ISTOP
11 T(J) = BREAK(])
10 CONTINE
N = KEND(L)

SET THE LAST K KNOTS EQUAL TO BREAK(L+1).

a0

Do
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DOBI -1, K
28 TwID) « BREAK(L+1)
RETURN

2,10)

SUBROUTINE OUTNTS(BREAK, V,L, T, N, K, KEND) _
C THIS SUBROUTINE IS FOR OUTPUTING ONLY. IT OUTPUTS ALL
C CALLING ARGUMENTS AF T E R VL2NT HAS BEEN CALLED.

*xxx%xx I[NPUT AND OUTPUT » = xx x x

' BREAK (1), ... BREAK(L)

Ta1), ... T(N)..,.THE KNOT SEQUENCE )

KEND(1), ... ,KEND(L)....INDEX OF THE LARGEST KNOT EQUAL TO
BREAK(1), ..., BREAK(L)

OOOOOOOOOO0NONn
-
F
+
s
g
3
}é

DIMENSION T(1), KEND(1), BREAK(1)
INTEGER V(1)
WRITE(20,40) K, L, N
43 FORMAT(//’ THE ORDER K = ', 13-/’ THE & INTERVALS L ', I3,
x 77’ THE DIMENSION N = /, I3)
WRITE (28, 41) :
41 FORMAT(//’ BREAKPOINTS’, T20, ° CONTINUITY CONDITIONS’)
DO4S J =1, L '
45 WRITE(2D,42) BREAK(J), V()
42 FORMAT(F16.8,T30, I3)
LPL =L +1
WRITE(20,43) BREAK(LP1)
43 FORMAT(F16.8)
WRITE (20, 8)
8 FORMAT(//’ T INDEX ')
NPK 3 N + K
ICOLNT = 1§
INDEX = 1
WRITE(20,5) T(1), INDEX
5 FORMAT(F16.8, 5%, I3)
DO7J 2 NX
IF (T(J) EQ. T(J-1)) GO TO 5@
WRITE(20,12) ICOUNT, KENDC(ICOUNTY, T(J), J
12 FORMAT(TI0, 'KEND(’,13,’)s *,13/T1,F16.8,5%,13)

. GO TO 13

S8 WRITE(29,9) T(I), J
9 FORMAT(F16.8,5%,13)

GO T0 7
13 ICOUNT = ICOLNT + 1
7 CONTINE

RETURN
END

SUBROUTINE FLAG(IFLAG, N)
C THIS SUBROUTIMNE CHECKS FOR
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(1) BREAKPOINTS LHICH ARE NOT STRICTLY INCREASING;

(2) TOO MANY CONTINUITY CONDITIONS;

(3) K LARGER THAN 28 o

(4) X VALLES OUT OF RANGE OF THE FIRST AND LAST BREAKPOINTS.

PARRMETER (MRX = 188, NDMRX =208, KTN'RX = 2003 )

INTEGER V

COMON ~ DATR ~ NDATA, X(NDMARX), Y(NDMAX), FTARLE
COMMON ~ APPROX ~ BREAK(NMARX) , COEF (KTNMAX ), L, K, VINIRX)

DO 1 I-t,L
IPl=I+1
IF(BREAK(I) .GE. BRERK(I+1)) GO 1O 2
1 CONTINLE : :

GO TO 4

2 WRITE(29,3) BREAK(I), BREAK(IP1)
3 FORMAT (/' BREAKPOINTS MUST BE STRICTLY INCREASING. '~
L ’  BREAKPOINT’,F16.8,2X, 15 NOT LESS THRN BREAKPOINT’,
x Fie.8) :
IFLARG=1 .

4 DO S Ieg,L
IF(v(l) .GE. X} GO TO 6
S CONTIMNLE
GO TO 20

6 WRITE(2D,7) I,v(D),BREAK(I)
7 FORMAT(/' THE NIMBER OF CONTINUITY CONDITIONS MUST BE STRICTLY'~

x SX,’ LESS THAN THE SPLINE ORIER K, ver,Iz2, e, 127
x SX,’ AT BREAKPOINT’,F16.8,7 IS TOO LARGE.’)
IFLARG=1
28 IF (K .GT. 28 GO TO B
GO TO 18 '

8 WRITE(29,9) K
9 FORMAT(/’ K=, 12,7 IS TOO LARGE.’ -’ THE ORDER K MUST BE 20 OR’,
* *LESS. )

IRAG.1 -

18 DO 11 I=1,NDATA _
IF(X(D) LE. BREAK(1) .OR. X(I) .GE. BREAK(L+1)) GO TO 12

11 CONTINE
GO TO 14

12 WRITE(29,13) I,X(1),BREAK(]1), BREAK(L+1) -
13 FORMRT(/’ X VALUE OUT OF RANGE.’~’ X(’,14,’)=’,F16.8,
* 7 IS NOT IN THE RANGE BREAK(1)s=’,F16.8/
x SX, 'TO BREAK(LAST)=’ ,F16.8)
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IFLAG=1
14 IF(N .GT. NDATA) GO TO 16
GO TO 18

16 WRITE(28,17) N, NDATA
17 FORMRT(/* THE DIPB*SICN N=’, 12, :
* ' IS GREATER THAN THE SAMPLE SIZE’,14,'.")

INLAG=1

18 KTNe=K=tN .
IF(NDMRX .LT. NDRTA) GO TO 19

GO TO 22

19 WRITE(28,21) NDMAX, NDATA
21 FORMAT(/’ CHECK PARAPETER STATEMENT.’/SX,’ NDMAXs', IS,
x - " MJST NOT BE LESS THAN THE NUMBER OF DATA POINTS’,
» 14,7. %)
IFLAG=1

2 IF (NRX .LT. ) GO To 23

GO 70 &5

23 WRITE(2D,24) N

24 FMT(/’ OEX PARAMETER STRTEMENT. */SX, * NMAX MUST NOT BE’,
= ! LESS THAN N=’ IS)
INLAG=1 '

25 IF(KTNMRX .LT. KTN) GO TO 26
GO T028 '

26 WRITE(2D,27) KTN

27 FORMAT(/’ CHECK PARAMETER STATEMENT, ’/SX, ’ KTNMAX MUST NOT,
- ’ BE LESS THAN KTNe’,14,°.")
IFLAGH

28 IF(IFLAG. EG. @) GO TO 3@

WRITE(28, 29)

29 FORMAT( 77"’ mmmm*wmumtnﬂummm'
» 'STU’M CRMTPROCEED PROGRAM ABORTS. ')

END ’ :
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SUBROUTIMNE LSTSQ1(T,N,K, Q, DIAG, BCOEF)
CALLS BSALVB, BO¥RAC, BOHELY
c
COMMON STRTEMENT DARTA IS USED.

C

C THIS IS A MODIFICATION OF DE BOOR’S SUBROUTIMNE L2AFFR,
C PRGE 255. IT INPUTS T,N,K, FINDS THE LEAST SQUARES .
C RPPROXIMATION TO THE DRTA USING WORK ARRAYS G AND DIAG,
C AND OUTPUTS THE B-SPLINE COEFF ICIENTS BCOEF .

c
PARAMETER (AX = 28, NIMAX = 200)
REAL BCOEF (N), DIARG(N), Q(K,N), T(1), BIATX(KMAX)
COMMON ~ DATA / NDATAR, X(NDMAX), Y(NDMAX), FTABLE
c ,
DO 7 J=i,N
BCOEF (J) « @,
DO 7 Ie1,K
7 oI, 1) = 0.
LT = K
LT « @
DO 28 LL+1,NDATA
C LOCATE LEFT ST X(LL) IN (T(LEFT), T(LEFT+1))
18 IF (LEFT .E0. N) GO TO 15
IF (XL .LT. T(LEFT+1)) G0 70 1S
LEFT = LEFT+1
CLEFTMK « LEFTMKe1
: GO TO 18
1S CALL BSPLVB(T,K,1,X(LL),LEFT, BIATX)
DO 20 MM=1,K
D = BIATX(MMD)
J - LEFTMKHM
BCOEF (J) = DuY(LL) + BCOEF(J)
I
DO 20 JJeMM,K -
. Q(1, 1) = BIATX(IT)DU + G(T,T)
20 1 e I+l
CALL BOFAC(Q,K, N, DIAG) o
CALL BOMBLY(Q,K.N, BCOEF) e
SUBROUTINE BSPLVB(T, JHIGH, INDEX, X, LEFT, BIATX)
CALCLLATES THE VALLE OF ALL POSSIALY MONZERO B-SPLINES AT X OF ORDER
JOUT=MAX ( THIGH, (J+1 )% ( INDEX-1)
WITH KNOT SEQLENCE T.
DE BOOR PAGE 134-135

OOOONO

PARAMETER( MAX=2D)
INTEGER INDEX, JHIGH, LEFT, 1,7,JP1
REAL BIATX(JHIGH), T(1),X, IILTCL(M) DELTAR(JMRX) , SAVED, TERM
DIMEONSION BIATX(JOUT), TLEFT+JOUT)
CLRRENT FORTRAN STANDARD MAKES IT IMPOSSIBLE TO SPECIFY THE LENGTW
OF T AND OF BIARTX PRECISELY WITHOUT THE INTRODUCTION OF OTHERMWISE

aXaXp]

-l
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C SUPERFLOUS RDDITIONAL ARGUMENTS.

C -
C
18

C
2o

:gﬁ

C

[aXa¥a gl

DATA J/1/ . ,
SAVE J,DELTAL,DELTAR (VALID IN FORTRAN 77)
GOTO (10,20),
Je1
BIATX(1)=1. g o
IF (J.GE.JHIGH) GOTO 93
JP1eJ+1

DELTAR(J) e T(LEFT+J)-X

DELTAL (J) o X-T(LEFT+{~T)

SAVED=0.

DO 26 I»1,J o i

" TERM=BIATX(I)/(DELTAR(I)+DELTAL (JP1-1))
BIATX(I) =SAVED+DEL TAR (] ) »«TERM
SAVEDDELTAL (JP1-1)»TERM

BIATX(JP1)=SAVED

JeJP1

IF (J.LT.JHIGH) ) GOTO 28

o0
SUBROUTINE BOFAC (W, NBANDS, NROW, DIAG)

TRUCTS THE CHOLESKY FACTORIZATION C = L » D = L-TRANSPOSE.
SEX DE BOOR P. 256

INTEGER NBANDS, NROW, I, IMAX, I, JMRX, N
REAL W(NBANDS, NROW), DIAG(NROW), RATIO
IF ( NROW .GT. 1) GO TO 9
IF (W(1,1) .GT.@.) W1, 1) = 1.4(L, 1)

C STORE DIAGONAL OF C IN DIAG.

9
10

DO 1@ Nsi, NROW
DIAG(N) = W(i,N).

C FACTORIZATION

14

15

1?7
18

DO 20 Net, NROW
IF(WCL, NI+DIARG(NY .GT. DIAG(N)IGO TO 1S
DO 14 J=1,NBANDS

W(J,N) = 8.
GO TO =28
WO, NY = 1,.7W(1,N)
IMAX = MIND(NBANDS~-1,NROW - N}
IF (I .LT. 1) : GO TO 2o

IMRX » IMAX
DO 16 Ief, IMAX -
RATIO = W(I+1,N)md(1,N)
DO 17 Je=1, TMAX
W(T, N1 o WIT,N+I) = W(I+I, N)=RATIO
X« TMRX -
W(I+1,N) = RATIO
CONTINLE

INDEX
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RETURN

eND

SUBROUTINE BCHSLV (W, NBRNDS, NROW, B)
C SOLVES THE LINEAR SYSTEM CxxX=B OF ORDER NROW FOR X
C PROVIDED W CONTRINS THE CHOLESKY FRCTORIZATION FOR THE BANDED (Svym—
C METRIC) POSITIVE DEFINITE MATRIX C RS CONSTRUCTED IN THE SUBROUTINE
C BOFAC (A0 VIDE).
C DEBOOR PRGE 258 )

INTEGER NBANDS, NROW, J, TMRX, N, NBNDiM1

REAL WINBANDS, NROW) , BINROW)

IF (NROW.GT. 1) GOTO 21

B(1)=B(1)xi(1,1)

¢
¢ FORMARD SUBSTITUTION. SOLVE LaY<B FOR Y, STORE IN B.
21 NBNDM1=NBANDS-1
DO 32 Ne1,NROW »
THAX=MINGCNBINDIM1 , NROW-N)
IF (JMAX.LT. 1) : GOTO 3@
DO 25 Je1, MAX
25 BOT#N) sBU T+ —W(T+1, N)B(N)
2 CONTINE
2 ,
C BACKSUBSTITUTION. SOLVE L-TRANGP. XsDwx(-1)xY FOR X, STORE IN B.
DO 4@ NaNROW, 1, -1
B(N) *B(N) (1, N)
TMAX=MING(NBNDML , NROW-N )
IF (MAX.LT.1) GOTO 48
DO 3B Jei, JMAX
s B(N) eB(N) =W (J+1,N)*B(J+N)
42 CONTINE
RETURN
SUBROUTINE BSPLPP (T, BCOEF,N,K, SCRTCH, BREAK, COEF, L)
C CALLS BSPLVE
C
C CONVERTS THE B-REPRESENTATION T, BCOEF,N, K OF SOME SPLINE INTO ITS
C PP-REPRESENTATION BREAK, COEF, L, K.
C DE BOOR PAGES 140-141

PRRAMETER (KMAX=28)
INTEGER K, L, N, I1,J,JP1,KMJ,LEFT,LSOFAR

REAL BCOEF (M), BREAK(1),COEF (K, 1),T(1), SCRTCH(K,K)
*, . BIATX (IRAX) , DIFF, FKMJ, SUM
C DIMENSION BREAK(L+1),COEF (K,L), T(NGK)
LSOFAR=0
BREAK(1)aT(K)
DO 5@ LEFTeK,N
C FIND THE NEXT NONTRIVIAL KNOT INTERVAL.
IF (TWEFT+1).EQ.T(LEFT)) GOTO S@
LSOFAR=LSOF AR+ | :
BEEH((LSOFQRﬂ)-T(L_EFTﬂ)
IF (K.GT.D) GOTO 9 -

COEF (1, LSOFAR) «BCOEF (LEFT)

1 e A

o
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GOTO 50

STGEMKESH.IPECWSWTOWWT INTG?VQ_V

IN SCRTQH(,
DO 18 I-i, K
SCRTO-!(I 1) =BCOEF (LEFT-K+I)

FOR Jel,...,K-1, COMPUTE THE K-J B-SPLINE COEFF’S RELEVANT TO
CLRRENT KNOT INTERVAL FOR THE J-TH DERIVATIVE Bv DIFFERENCING
THOSE FOR THE (J-1)ST DERIVATIVE, AND STORE IN SCRTCH(.,J+1).
DO 22 JP1e2,K
JeJPi-1
KMT oK =T
FKMI=FLORT (kM)
DO 20 Ie1,KMJ
DIFF«T(LEFT+I)-T(LEFT+I—MI)
IF (DIFF.GT.@) SCRTCH(I,JP1)s
:- ( (SCRTCH(I+1, J)=SCRTCH(I, 1)) /DIFF ) xFIqLJ
CONTINLE :

FOR J«@,...,K-1, FIND THE VALLES AT T(LEFT) OF THE J+1

B- SPLINES OF ORDER J+!{ WHOSE SUPPORT CONTRINS THE CLRRENT

KNOT INTERVAL FROM THOSE OF ORDER J (IN BIATX), THEN COMBINE

WITH THE B-SPLINE COEFF 'S (IN SCRTCH(.,K-J)) FOUND EARRLIER

ngrEG'FU!E THE (K=J-1)ST DERIVATIVE AT T(LEFT) OF THE GIVEN
NOTE. IFMREPEQTEDCR.LSTOBS’LVBFREWTOMTE

TOO MUCH OVER-EAD, THEN REFPLACE THE FIRST CALL BY

BIATX({)=1,

AND THE SUBSEQUENT CALL BY THE STARTEOENT

JeJP1-1 .

FOLLOWED By A DIRECT COPY OF THE LINES

DELTAR(J)=T(LEFT+JI)-X

BIATX(J+1)«SAVED

FROM BSPLYB. DELTAL (KMAX) AND DELTAR(KMAX) WAULD HRVE TO

APPEAR IN A DIMENSION STRTEMENT, OF COURSE. s )

CAL BSPLYB(T, 1,1, T(LEFT),LEFT,BIATX)
COEF (K, LSOFAR) »SCRTCH(1,K)
DO 3@ JP1=2,K
CALL BSPLVB(T,JP1,2, T(LEFT),LEFT, BIRTX)
KMT eK+1-TP1L
SUM=0Q.
DO 28 I=1,JPL .
SMeBIATX (1) *SCRTCH( I, KMT ) +SLM
COEF (kMJ, LSOFAR) =SM
CONTINLE
L=LSOFAR
RETURN

END ‘
SUBROUTINE ERRLZ21 (FTAU, ERROR, ERRDF, SSE, MsE)
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CALLS SUBPROGRAM PPVALU( INTERY)

C :
C THIS SUBROUTINE COMPUTES THE ERROR SS AND MS. IT IS A
C MODIFIED VERSION OF DE BOOR’S SUBROUTINE L2ERR, PAGE 261.
C MSE ]S THE OUTPUTED MEAN SGQURRED ERROR.
C
PRRAMETER (MMRX =100, NDMAX = 2% I(TN‘ﬁx 2000
INTEGER ERRDF, V
REAL FTAU(L), ERROR(1), PSE Y X BQER( coc:»‘
C DIMENSION F'TF!J(NIﬂTQ) ERROR (NDATA)

COMMON - DRTR ~ NMTQ X (NDMRX) , Y(NDﬂX), FTaBLE
COMMON ~ APPROX ~ BREAK(NMRX), CCEF(KTN‘ﬂX), L, K

. * , VINRX)
c
SSE-0.
DO 10 LL+1,NDATA
FTAU(LL) = PPVARLU(BREAK,COEF,L, K, X(LL), )
ERROR(LL) = Y(LL) - FTAJL)
e SSE « SSE + ERROR(LL)*x2
MSE = SSE/ERRIF
: RETURN
END
’ REAL FUNCTION PPVALU(BREAK, COEF, L, K, X, JDERIV)
C CALLS ’INTERV’
C CALALATES VALLE RT X OF JDERIV-TH KD?IV‘QTIVE OF PP FCT FROM PP—REFR

INTEGER JDERIV,K,L, I,M, NDUMPTY
REAL B?ER((L),CCEF(K,L),X, FMIDR, H
PPVALU=Q.
FMMIDR=K-JDERIV
DERIVATIVES OF ORDER K OR HIGHER AREARE IDENTICALLY ZERO,
IF (FMUDR.LE. @) - GOTO 99

FIND INDEX 1 OF LARGEST BREAKPOINT TO THE LIFT OF X.
CALL INTERV(BREAK,L, X, I, NDUMTY)

EVALURTE JDERIV-TH DERIVATIVE OF I-TH POLYNOMIAL PIECE AT X.
Hex~BREAK (]
DO 18 M<K, JDERIV+1, -4
F’PV'FLU-(PPVR_U/FWIR)%CCEF(M b
FMUDRFMMUIDR-1
RETURN

END
SUBROUTINE INTERV(XT,LXT,X,LEF T, rFLAG)
C COMPUTES LEFTMAX(I, 1.LE.I.LE.LXT.AND. XT(I).LE. XD
C DE BOOR PAGE 32
INTEGER LEFT,LXT,MFLAG, IWI, ILGC, ISTERP, MIDILE
REAL X, XT(LXT)

8

DATA ILO/1/
c SAVE ILO (R VALID FORTRAN STQTD’ENT IN THE NEW 1977 STANDRRD)
IHI=ILO+1 .
IF (THI.LT.LXT) GOTO 20
IF (X,GE.XT(LXT)) GOTO 110
IF XT.LE. 1) GOTO I
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ILO=LXT-1
IHT LT
C
20 IF (X.GE.XT(IHI)) GOTO 4@
IF (X.GE.XTC(ILO)) GOTO 109
C
= ooodNOW X.LT.XT(ILO). DECRERSE ILO TO CARPTURE X.
ISTEP-1 .
3 IHI=ILO
ILQ=IHI-ISTEP
IF (ILO.LE.1) GOTO 35
IF (X.GE.XT(ILO)) GOTO S@
ISTEP=-ISTEPXS
GOTO 31
33 ILO=1
IF (X.LT.XT(1}) GOTO S@
' GOTO 5@ ’
c woooaNOW X, GE . XT(IHI). INCRERSE [HI TO CAPTURE
42 ISTEP=2
41 ILO=IHI
IHIILO+ISTEP
IF (IHI.GE.LXT) GOTO 45
IF (X.LT.XT(IHI)) GOTO S8
[STEP=1STEP*S
. GOTO 4%
a5 IF (X.GE.XT(LXT)) GOTO 110
IHIslLXT
C
C aociNOW XTC(ILO) LLE.X.LT.XT(IHI). NARROW THE INTERVAL.
S MIDDLE=(ILO+IRI) 2
IF (MIDDLE.EQ.ILO) GOTO 108
C NOTE. IT IS ASSUMED THAT MIDDLE-ILO IN CARSE IHI=ILO+1.
IF (X.LT.XT(MIDDLE)) GOTO 53
ILO=MIDDLE
GOTO S8
S3 IHI=MIDDLE
GOTC S8
CrawSET QUTPUT AND RETURN.
k.2 MFLAGe~]
LEFTel
. RETURN
189 MFLAGD ]
LEFT=ILO
RETURN
110 MLAGe]
LEF Ta(XT
RETURN
SUBROUTIMNE CNTRST(I, JDERIV, N, K, L, T, BREAK, KEND,
* BRY, BLF, DCOEF, CTRAST)
CALLS BCONT,

ORIGINAL

PAGE 1S

C .
C FINDS THE CONTRAST COEFFICIENTS FOR TESTING CONTINUITY OF THE
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C JDERIV-TH DERIVATIVE OF THE SPLINE FUNCTION AT BREAK(ID,

o

Cacooocs T N P U T sowtomoton

CL....NMBER OF INTERVALS

CTwL),...,T(NsC) . ... THE KNOT SEGUENCE

CIL....THE INDEX OF THE BREAKPOINT OF INTEREST

C BREAK(1), .. . BREAK(L+1). ... THE BREAKPOINT SEQUENCE -

C JDERIV... . NONNEGARTIVE INTEGER GIVING THE ORDER OF THE DERI~

: VRTIVE TO BE EVALURTED

KEND(1),...KEND(L)....INDEX OF THE LARGEST KMNOT EGUAL TO
BREAK (1), ..., BREAK(L)

N....DIMENSION OF SPLINE SPACE

K....QRDER OF SPLINE

BRT, BLF, DCOEF...WORK RRIAYS OF LENGTH N

wiocoox O U TP U T sooomoox :
CTRAST(1),...,CTRAST(N). .. . THE CONTRAST COEFF ICIENTS USED TO
TEST CONTINUITY OF THE JDERIV-TH
. DERIVATIVE AT BREAK(I)

wiickiok M E T H O D soomioicx

THE FUNCTION QUBPROGRAM BCONT IS USED TO COMPUTE THE VALLE OF
THE LEFT AND RIGHT LIMITS OF THE JDERIY-TH DERIVATIVE OF
RELEVANT B-SPLINES AT BREAK(ID.

INTEGER KEMND(1)
REAL BRT(1), BLF(1), CTRAST(1), T(1),
= BREAK(1), DCOEF (1)

DO 28 JT =1, N
28 DCOEF (JJ) = 0.

[alaXataTeXeYaXaYeYoXaXalalaXaXaXs)

DO 18 J =1, N
DCOEF(J) = 1.

COMPUTE VALLE FOR RIGHT CONTINUITY :
IF (MBND(D)K+L LE. J .AND. J LE.KEND(I)) GO TO 28

BRT(J) = @.
: ] GO TO 48
3 BRT(J) = BCONT(T,DCOEF , N, K, BREAK(I) ,KEND(I),
x JDERIV)

COPUTE VALLE FOR LEFT CONTINUITY
42 IF(KEND(I-1)-K+1 .LE. J .AND. J .LE. KEND(I-1)) GO TO S@

BLF(J) = Q.
GO TO &8
e BLF(J) = BCONT(T,DCOEF ,N,K, BREAK(I),
* KEND(I-1), JDERIV)

C
COMPUTE DIFFERENCE OF THE LEFT AND RIGHT VALLES
60 CTRAST(J) « BRT(J) - BLF(T)
DCOEF () = 8.
18 CONTINLE
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END
REAL FUNCTION BCONT(T, BCOEF , N, K, X, I, JDERIV)
CARLALATES VALLE RT X OF J'!ZCRIV-TT-! DERIVFITIVE OF SPLINE FROM B—REP.
C THIS IS AR MODIFIED VERSION OF DE BOOR’S SUBROUTINE BVALLE, ]
C PAGE 144, THE ONLY DIFFERENCE IS THAT THE LEFT-HAND KNOT
C INDEX 1 IS INPUTED RATHER THAN FOUND IN INTERV. CONSE-
C QUENTLY, LIME 18 IS MODIFIED TO INPUT I AND LINES 710 AND
C 728 ARE OMITTED., THE PURPOSE IS TO ALLOW EVALUATION AT
C BREAKPOINTS WITH LEFT (BR RIGHT) CONTINUITY.
PARAMETER (KMAX=29)
INTEGER JDERIV,K,N, I.ILO. IMK, J,JC, JCMIN, JOMAX, JT, KMJT, KML , MFLAG
* , NI
REAL BCOEF(1),T(1),X, AT (KMAX), DU (KMARX) , DRIKMRX )Y, FKMJ
C DIMENSION T(N#K) -
BCONT =0,
IF (JDERIV.GE.K) GOTO 99

oox [F Kel (RND JDERIV=0), BCONT- B:CEF(IJ
KMieK-1
IF (QM11.67.8) - GOTO 1
BCONT=BCOEF (1)

(aXnl

GOTO 99

wiee STORE THE K B-SPLINE COEFFICIENTS RELEVENT FOR THE KINOT INTERVAL
(T(D), T(I+1)) IN AJ(1), LAJK) AND COMPUTE DL(J)eX-T(I+1-1),
DR(J')-T(I#J’)-X Je1,... K-i. SET ANY OF THE AJ NOT OBTAINARLE
FROM INPUT TO ZERO. i'l’ ANY T.S NOT OBTAINABLE EQUAL TO T(1) OR
TO T(N+K) APPROPRIATELY.

1 JOMINey
IMKsTK :
IF (IMK.GE.®) GOTO 8
JCMIN=1-IMK
DO 5 Je1,I

5 DL(T)ysX=-T(I+1-T)
DO 6 JeI, KMl

AT(K-J)=8,
6 DL(T)«DL(ID

DO 9 Je1,KMi
DL(T)YaX=-T(I+1-T)

OOOOON

GOTO 10

O @

18 JORX=K
NMI=N-1 -
IF (NMI.GE.O) o .~ GOTO 18
JCrAaxX=K+NMT
DO 1S Jei,JONX
15 DR(I)T(I+])=X
DO 16 JeJORX,KMi
RI(J+1) @,
16 DR(J)«DR(JCMARX)

18 DO 19 J=1,KM1

GOTO 20
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19 DR(I)=T(I+)-X

28 DO 21 JC=JCMIN, JOMRX _
21 AJ(JC)-BCOEF (IMK+JC) _ _ .

mon DIFFERENCE THE COEFF ICIENTS .TIIRIV TIMES.
IF (JDERIV.EQ.) GOTO 3@ :
DO 23 Je4, JERIV
KMT o -J
FIAT «FLORT (K1)
ILO=KJ
DO 23 JJei, K
RI(JT)e ((RJ(JJ’+1)—QJ(J’J)7/(D.(ILO)+DR(JJ)))#'I-0’LI
23 ILOILO-1

aoox COMPUTE VARLUE AT X IN (T(I),T(I+1)) OF JDERIV-TH DERIVRTIVE,
GIVEN ITS RELEVENT B-SPLINE COEFS IN AJ(1),...,RJ(K-JDERIV).
R IF (JDERIV.EQ.KML) GOTO 39
DO 33 J=JDERIV+1,KM1
KM =K-J
ILO=1J
DO 33 JTe1,xkMJ
AJ(ID)=(RT(IT+1)xDL(ILOYHRI(JTI*DR(IT))Z(DLCILOI+DR(JIT))
3 ILO=ILO~!
39 BCONT=RJ(1)

99 RETURN
8D

THIS IS FOR 1 DF HYPOTHESES.
SUBROUT

INE SSHYP(BCOEF , CTRAST, W, NBANDS, N, PYAR, VFR,
x SSH, MSH, HDF)

CALLS FORSLB

nnnnnnnnnnnnnnnnnnnnn

FINDS THE VRRIANCE OF R CONTRAST AND ﬁE MS FOR TESTING THAT
THE CONTRRST IS ZZRC. :

x 2 x 8 x x ITNPUT % » x x x %
LINV, . THE INVERSE OF L OBTAINED FROM B CH I N V
CTRAST. ... THE CONTRAST VECTOR OBTRINED FROM CNT RS T
BCOEF .THE B-SPLINE COEFFICIENTS
'D-E MATRIX FROM B C H F A C CONTAINING D-INVERSE
NBQHDS . EQUALS K
N....THE NJMBER OF ELEMENTS IN THE CONTRRST VECTOR—
ﬂ._SO THE DIMENSION OF THE SPLINE SPACE
PVYAR. .. . WORK VECTOR OF LENGTH N EQUAL TO THE PRODUCT
W(l,.)%A, I.E. D-INVLINVCTRAST

w ox x x x s QUTPUT *«# % x v« x »

VAR....THE COEFFICIENT OF SIGV-SQUARED IN THE VARIANCE OF THE
CONTRAST, [.E. THE PRODUCT CTRAST-TRANSPOSEsL INV-
TRANSPOSE kD~ INVL_ INWC TRRST

SSH, MSH, HIF,.. . THE SS, MS, AND DF FOR THE HYPOTHESIS

A
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x x x x 3 3 M E T HOD X % & % % #
THE PRODUCT LINV=CTRAST IS OBTAINED THEN PREMATIPLIED BY
D-INv THEN THAT RESLT IS PREMATIPLIED BY (LINvCTRAST)-

TRANSPUSE

INTEGER HDF
REAL NUM, MSH
REAL CTRAST(1), WNBANDS,N), PVAR(N)
REAL BCOEF({) )
NUM= 8.
DO 3 II-t,N

3 NM =« NUM + (CTRAST(IT ) «BCOEF(II))
CALL FORSUB(W,CTRAST, NBAINDS, N) .
DO 1 II-1,N

1 PYRR(TII) = WL, IDACTRAST(ID)
VAR = B,
DO 2 II={,N

2 VAR = VAR + CTRAST(ID)»PVAR(TI)
SSH e« (NUMxs2) VAR
MSH e SSH
HDF « 1

END - .
SUBROUTINE FORSUB(W, AR, NBANDS, NROW)

SOLVES LY=AA FOR Y AND STOPES IN AR

x ok ok x x ¥ T NP UT » & x & % &

W...A MATRIX FED IN FROM B C H F A C AND CONTRINING IN ITS RGOS
THE DIRGONALS OF A P. D. SYMETRIC MATRIX C

NBANDS. .. THE BANDWIDTH OF C

PRC)J..TD-ECRDG-'C .

RA...THE VECTOR OF LENGTH NROW CONTAINING THE RIGHT HAND SIDE

* % x x x *x OUTPUT* % » x & x

AR, ..THE VECTOR OF LENGTH NROW CONTRINING THE SOLUTION

% % x &k x METHOD » % % » % x A

FORWARD SUBSTITUTION ROUTINE FROM DEBOOR’S BCHSLY IS USED

A

REAL W(NBANDS, NROW), AR(NROW)

IF (NROW.GT.1) GO TO 21
RA(1) =AA(1) X1, 1)
RETURN

21 NBNDM1=NBANDS~1

DO 30 Nei, NROW
JMARX=MIND (NBNDML , NROW-N)
IF (JMRX.LT. L) GO TO 3@
DO 25 Je1, MAX
RACTHN) =AR(THN) W J+1, N)*m(N)
CONTINE

8AR
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RETURN

SUBROUTINE REINOT (KEND, KNOT, N, K, L, T, V, BREARK)
RELABELS THE KNOT SEQUENCE T( )BYCMITTIPGTTELEFST
SIGNIFICANT KNOT, BREAK(KNOT)

HOAIOIONOIROIOAICKN T NPT H0I0K0AOI0I0IAORAONIOICKACION

KOND(I)., . THE INDEX OF THE LARGEST KNOT EQUAL TO BREAK(I)
KNOT. INID'( OF THE BREAKPOINT TO BE OMITTED:

N. DIPE}SIG‘O oF THE (OLD) SPLII"E SP‘-'CE

K...ORDER OF THE SPLIMNE o

T... KNOT SEQUENCE

V(I). .NUMBER OF CONTINUITY CONDITIONS AT BREAK(I)
BREAK. . . BREARKPOINT SEQUENCE

ORI TP T $0IDI0I0IOII0OIIOIOKIIION
N...DIMENSION OF (NEW) SPLINE SPARCE WITH BREAK(KNOT) OMITTED
TH, . TN ... (N KNOT SEQUENCE WITH BREAK(KINOT) QﬂITTED

N _ _ o
SINCE BREAK(KNOT) e T(KEND(KNOT-1)+1)=, .. «T(KEND(KNOT)), WE
RELABEL ALL T’S BEYOND.

DIMENSION KEND(1), T(1), BRERK(1)
INTEGER V(1)
T1KEND (KNOT-1) +1
12 =KEND (KNOT) +1
T1eNHK=T2+1
DO 1 KTe1,J1
KieKT=1
1 TCI14K1)aT(124K1)
NaN~ (K=Y {KNOT))
DO 2 IT=KkNOT,L
BREAK(I1) =BREAK(IT+1)
IFCII .EQ. L) GO TO 2
Y(IIdey(II+1) :
KEND(II) =KEND(II-1)4K-V(I T}
2 CONTINLE
L=L-1

RETURN
END
SUB'\'QJTIPE STDERR (W, BCOEF , K, N, L, MSE, BB, AA, SE, LINV)
CALLS BCHINV AND MATVEC
C
C THIS SUBROUTIMNE COMPUTES THE STANDARD ERRORS OF THE B-SPLINE
C COEFFICIENTS AND QUTPUTS THEM,
C

OO0 OOONONNO

REAL W(K,N), BCOEF (N),MSE, BB(N,NJ, SE(N),LINV(N,NY, RA(N, N)
CALL BCHINV(W, K, N, LINV)
WRITE(20,10) L,K ‘

10 FORMAT (/77" PROCEDURE TERMINATES WITH Ls’,13,” AND K=*, 13/

i

a
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DO 11 Ile-1,N
‘DO 11 JJ-1,N
11 BB(JJ, ID)=W(y, II)»LINVC(IT,IT)

CALL MATVEC(N,N,N, BB, LINV,AR)

DO 13 Ilei,N
SE(II)SART(AAR(II, IT)xMSE)
WRITE(28,12) 1I, KW(II) SEID)
12 FORMAT(I3,2F16. 8
13 CONTINLE
RETURN
(3310
SUBROUTINE BCHINV (W, NBANDS, NROW, INV)

C FINDS L~-INVERSE WHERE L IS THE LOWER TRIANGULAR MATRIX

C IN THE QHOLESKY FARCTORIZATION OF THE BANDED SYMMETRIC P.D.
C MATRIX C AS CONSTRUCTED IN THE SUBROUTINE BC H F A C.

E SEE DE BOOR, P. 256

Croocex T NP U T soroacioox

C NROW..... IS THE ORDER OF THE MATRIX C.

C NBANDS..... Is THE BANDWIDTH OF C.

Cl..... CONTRINS THE CHOLESKY FRCTORIZATION OF C AS QUTRUT
c FROM SUBROUTINE BC H F A C WITH ROWS 2 THROUGH NBANDS~-1
C CONTARINING THE NON-ZERO AND NON-UNIT DIARGONAL ENTRIES
C OF L.

C

Cotopaoioxn O U TP U T sceoscsonok

C INv..... THE INVERSE OF L.

C

Coorpioior M E T H O D soreomcncs

C THE LINEAR SYSTEM L»L-INVERSE « IDENTITY IS SOLVED FOR

C LxINVERSE By SUCCESSIVELY FINDING THE COLUMNS OF L~INVERSE
C USING THE FORWARD SUBSTITUTION ROUTINE IN B C H S L V,

C

INTEGER NBANDS, NROW, J, TMAX,N, NBNDM1

REAL WINBRNDS, NROW) , INV(NROW, NROW)

IF ( NROW .GT. 1) GO TO 21
INV(L, 1) = 1.

C
C STORE THE IDENTITY MATRIX IN INv
21 DO 10 J=1,NROW
DO 10 I=1,NROW
IF (I .EG. GO TO 28
INv(I,]) = @, .
: GO TO 10
20 INV(I,T) = 1.
10 CONTINUE

C
C NOW USE FORWARD SUBSTITUTION FROM B C H S L V.
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NBNDMS « NBANDS - 1
DO 48 Je1,NROW
DO 3 Nei,NROW
m-nxmnmmmmw—m
IF (MR LT, B GO TO 32
nozsx-xm

25 INVCIHN, T) = INVCIHN, T2 = WOI+L, NIXINVIN, J)

a CONTINLE
40 csmmz

SUB'\’OJTI"E MATVEC(N,NM, M, X, Y, 2) .
< INDST}'EWPQTRIXG?VECTG?ZWIO* ISTT-EF*?OD..CT
C Xy WHERE X IS NOWM AND Y IS NDM.

(]

XIN,ND, YINM,M), Z2(N, M)
i) b )

ma:

RETURN

o
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ORDER REDUCTION PROGRAM LISTING

. PROGRAM XPLTZ2 (INPUT, QUTPUT, TRPEE=QUTPUT, TRPEZD, TARPE21 )
C STEPDOWN FOR REDUCING SPLINE ORDER (FOR ALL INTERVALS
SIMATANEOUSLY) WHILE KEEPING THE KMNOTS FIXED R’{D ASSLMING
K=-2 CONTINUITY CONDITIONS

NDMAX 1S AT LEAST THE SAMPLE SIZE, NDQTQ

NRX IS AT LERST N, WITH MARXIMUM CONTINUITY CONSTRAINTS,
NeL+k=1. WITH NO CONTIMUITY CONSTRAINTS, Nal»K,

KTNRX IS AT LEAST KaN,

PRRAMETER (NMAX= 1088, NDMAX =208, KTNMAX = 2008 )

REAL BCOEF (MRX), G(KTN’Q)() DIARG(KTNMAX), T (NDMAX)
,LINVI(KTNRX), DCW(WX) BRT (N1RX), R.F(NW)
,M(W),VM(W),B(N‘QX),C(N‘RX),QTRP(W)

»F (NDMARX) , ERROR (NDMAX ) , MSH, MSE , SE (NMAX)
KATNMRX, NMRX) , FBONMAX)
, VAR (NMAX) , CCUNMRX) , CT(NMARX) , CTRAST (NMAX)

INTEGER ERRDF, HDF, V, KEND (NMAX)

COMMON /DATR NDATA, X(NDMARX), Y (NDMAX) , FTRELE

COMMON /APPROX, BREAK (NMAX), COEF (KTNMRX) , L, K, VINMRX)

OONOOOONO

% % ¥ X %

ICOUNT =@
C ENTER DATA
CALL DAT1(ICOUNT)

C GET THE KNOT SEQUENCE
CALL VLNT(BREAK,L,K,V,T,N, KEND)

C PRELIMINARY OUTPUT
- CALL OUTNTS(BREAK,V,L, T,N,K, KEND)

CHECK INPUT DATA
IFLAG=-0
CALL FLAGC(IFLAG, N)
IFCIFLAG .EQG. 1) GO TO &5

CALL PSEUDO

IEND=0
M1 'Lfl

C WE WILL TEST THAT THE KV-I-STV DERIVATIVE IS ZERO IN ALL INTERVALS

C

C GET THE LERST SQUARES FIT, I1.E., THE B-SPLIMNE COEFFICIENTS.
1 CALL LSTSQ1(T,N,K,Q,DIAG, BCOET )

c LSTSR1 CALLS BgaLVB BCHAC, AND BCHSLY.
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C GET SsE AND MSE
ERRDF =NDATA-N
CKLBS’LPP(TH:&FNKDI%B?ER(CCE'L)
CALL ERRL21 (F, ERROR, ERRDF, SSE, MSE)

c RRL21 CALLS PPVALU WHICH CALLS INTERV,
IF(IEND .EG. 20 GO TO 3@
LPi=_+{
DO 18 I-1{,LP1

10 FB(I)=PPVALU(BREAK, COEF , L, K, BREAK(]), 3

C ook oioionokomioiok ALOTS AOROKOICINIOIIOICICII I O NOK SOK X4 3 A 40K
CALL INFOPLT(Q,NDATA,X,1,F,1,8.,62.,74.,158.,1.,
* 9,9HINDY DATA, 1, 1HY,8,5.,4.,.75,.73)
CALL INFOPLT(O,NDARTA,X,1,Y,1,0.,62.,74.,158.,1.,
x 9,9HINDY DATA, 1, 1HY,22,5.,4.,.75,.75)
CALL INFOPLT(1,LM:,BREAK(2),,FB(2),1,8.,62.,74.,158.,1.,
- 9,94INDY DRTAR,1,1HY,1,5.,4.,.75,.73)

KMi oK-1

KR =K =2

KM3=K-3

IF(IEND.EQ.1) GO TO B
IF(v(2).EQ.M2) GO TO 12
WRITE (29, 15) K, KM2, SSE, MSE

1S FORMAT (/7  foiiooicickoiaiorlolICIOIOIIOIOIHK O IGIOIINICIORROMCIOIHOIIoNN |

» /7' THE SMOOTHEST SPLINE OF ORDER K=',12,2X,
- PWITH MARXIMUM CONTINUITY C7, 12, 2%X5X,
= "HAS SSE-’,F16.8,2%,'AND MSE=’ ,Fle.8)

IF(K.EQ.1) GO TO 8
WRITE(20, 16} K,ms,mx,n-e

16 FORMAT(/’ CAN ORDER K=’,12,2%, "WITH SUB-MAXIMM CONTINUITY cr,

* IZEVSX’ERER.CEDTOG?IERK-’IZZX
x 'WITH MARXIMUM CONTINUTIY C’, 12,7 2%
DO 18 Ile2,L

18 V(IT)=K-2
CALL VILNT(BREAK,L,K,V,T,N,KEND)
GO TO 1

C TEST FOR LOWER ORDER WITH THE HYPOTHESIS MATRIX KMAT,
12 DO 89 JJ={ N
g9 DCOEF (JI) = @.
DO 2 III=i,N
DCOEF (III) = 1.
DO 81 II=1,L
KMAT(IT, I11)=BCONT (T, DCOEF, N, K, BREAK (11, KEND(ID), Kru)
Me(II-1)*N+IIT
81 CT(MY~KMAT(IL, III)
DCOEF (I11) = B.
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=4 CONTINLE '
CFU.SSI-NPE’(KOE}'CTQKLNMDIFCVQQS—%@WBC
* LATRP,WVAR,CC,CTRAST)

C SSNPZCFLLSFG?&JB%MTVEC

FRATIO=MSHMSE

IF(FRATIO.GE.FTRRLE) GO TO S

WRITE(28, 3)
3 FORMAT(/7’ YES.’)

WRITE(28,31) K,KM3,FTARBLE, FRATIO, SSE, MSE

"31 FORMAT(’ FOR Ke’,12,2X, 'AND C’, 12,2¢SX,

x 'FTRELE VALLE =',F16.8,5X, "OBSERVED F«’,F16.8
x 7SX,’'SSE«’,F16.8,2%, "MSE-",F16.8)

KoK~1 )

CALL WANT(BREFK,L,K,V,T,N, KD‘{D)

GO T0 1

S IEND=1
WRITE(2D,6)
6 FORMAT(s/* NO.’) T
WRITE(20,31) K,KM3,FTABLE,FRATIO, SSE, MSE
WRITE (20, 32)
X FORMT(//’ PROCEDURE TERMINATES.  #05M0iciolokiorok Iomoiioioloioor K 7 )
DO 71 IIe2,L
71 VIII)sK~-1
CAL VLNT(BREAK, L K,v,T,N,KEND)
R TO1

C PRINT RESLLTING COEFFICIENTS AND STANDARD ERRORS.
8 WRITE(29,13) L,K, iR
13 FORMAT(///’ F‘ROCEU.RE TERMINATES WITH Le’,12,*; K’ , 12,'; C’,12
- 77’ N . COEF ST. ERR. ") )

CALL STDERR(Q, BCOEF ,K,N,L,MS5E,DIARG, AR, SE, LINV)
C STDERR CALLS BCHINY AND MATVEC.

IF(X .EQ. 1) GO TO 25
IENDe=2
Kek-1
DO 40 1l-2,L
a2 Y(IT)eK-1
CALL INT(BREAK,L,K,V,T,N,KEND)
GO TO
B WRITE(29,29) KM1,KM3,SS5E, MSE
29 FORMAT(//’ sxsoiamikiukioioioioioink FURTHER INFORMATION  soxoxkokaor *

x 5%, 'FOR K=*,12,2X, 'AND C°, 12, 2%/
x SX, 'SSE=’,F16.8, 2X, "MSE=" . F16.8)
CALL CALPLT(D.,@.,999)

25 STOP

END
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SUBROUTIMNE SSHYPZ (BCOEF, CT, W, NBANDS, NCON, N, R

x M :w:m.w;@.m;g.C.p‘m,w,cc.m)

INTEGER HDF,NCON, N, NBRNDS :
REAL SSH
REAL PVAR(NCON,N) , A(NCON, N} W(NBANDS, N, CT(1).
REAL VAR(NCON,NCON), B(N), C(NCON), ATRP(N,NCON) -
REAL MSH, WVAR(NCON,NCON), CTRAST(NCON,N), BCOEF (N),CC(N)
DO 1 Jei,NCONM
DO 2 JJ-1,N
MeJT+(I-1)N
CC(IT)=CT(M)
CTRASTI(I, JJ)=CC(IT)
CALL FORSUB(W, CC,NBANDS, N)
DO 3 J={,N
AT, T)=CC(T)
CONTINKE
DO 4 IIe1,NCON
DO 4 JJ=§,N
PVAR(II, I3y =L, I)=ACIL, I
DO S Ie«i,N
DO S J=1,NCON
ARTRP(I, T =A(), 1)
CALL MARTVEC(NCON, N, NCON, PVAR, ATRP, VAR)
DO 6 I=1,NCON
MMeaNCON~T+1
DO & J=1,MM
WVAR(I, JDevaR(I+T-L, )
CALL BOHFAC (WVAR, NCON, NCON, DIAG)
CALL. MATVECI(NCON, N, 1, CTRAST, BCOEF, B)
CARLL FORSUB(WVAR, B, NCON, NCOM)
DO 8 J=i,NCON
C(IavAR(1, J)xB(J) _
CALL MATVEC(1,NCON, 1,B,C, S5H)
MSH=SSH/NCON
HDF =NCON

RETURN
END

1
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